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Vibrational Spectroscopy

CHARACTERIZATION OF A PESTICIDE FORMULATION
BY MEDIUM WAVE NEAR-INFRARED SPECTROSCOPY
WITH UNINFORMATIVE VARIABLE ELIMINATION AND
SUCCESSIVE PROJECTIONS ALGORITHM

Guo Tang, Xiangzhong Song, Jing Hu, Hong Yan,
Kaixian Qiu, Kuangda Tian, Yanmei Xiong, and Shungeng Min
College of Science, China Agricultural University, Beijing, China

Near-infrared (NIR) spectroscopy, a rapid and nondestructive analytical method, has been

widely used in many fields. In this paper, medium wave near-infrared (MWNIR) was used

to determine the active ingredient of a deltamethrin formulation. An uninformative variable

elimination-successive projections algorithm (UVE-SPA) was employed to investigate

effective variables and was compared with UVE, SPA, and full-spectrum partial least

squares (PLS) regression. The results indicate that MWNIR was able to determine the

pesticide active ingredient and that UVE-SPA was an efficient variable selection approach

by eliminating spectral redundancy and colinearity. The developed method is a meaningful

exploration in the application of near-infrared spectroscopy and provides a valuable

reference on pesticide quality control.

Keywords: Deltamethrin; Medium wave near-infrared spectroscopy; Uninformative variable

elimination-successive projections algorithm

INTRODUCTION

It is necessary to develop rapid and reliable detection methods for pesticides to
ensure their quality. Currently, chromatography is the most widely used technique
(Lin and Hee 1998; Karasali et al. 2004; Phillips and Burns 2012). However, it
requires large instruments, requires long analysis times, and considerable labor.
Near-infrared (NIR) spectroscopy has been widely used as a rapid, noninvasive,
and reliable technique in many fields including agriculture (Armenta, Garrigues,
and Guardia 2007; Azzouz and Tauler 2008; Duan et al. 2012; Jamshidi et al.
2012), the petrochemical industry (Falla et al. 2006; Balabin, Safieva, and Lomakina
2010), and pharmacy (Porfire et al. 2012; Howland and Hoag 2013).
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NIR radiation covers the range of the electromagnetic spectrum between 700
and 2500 nm. Medium wave near-infrared (MWNIR) ranges from 1100 to
1800 nm and contains the first overtone region of C-H, N-H, and O-H and the
second combination of C-H (Silverstein, Basseler, and Morill 1981; Balabin and
Safieva 2008; Zou et al. 2010). Generally, models are built using the whole range
of NIR spectroscopy (Blanco and Peguero 2010; Dupuy et al. 2010; Sinelli et al.
2010; Puchert et al. 2010; Xiong et al. 2010). However, some of the regions contain
little useful information. Furthermore, wider waveband collection sets higher
demands on the instrument, which not only increases the cost but also limits the
application. As MWNIR contains the most important spectral information
(Silverstein et al. 1981) and a portable MWNIR spectrometer is available, this
technique offers low cost and facilitates in situ determination.

Partial least squares (PLS) is a widely used multivariate technique in NIR mod-
eling because it can analyze data that is strongly collinear (correlated), noisy, and
contains numerous X-variables, and also simultaneously models several response
variables, Y, i.e., profiles of performance (Wold, Sjöström, and Eriksson 2001).
Uninformative and collinear variables are two important factors that affect the mod-
eling efficiency. Uninformative variable elimination (UVE) can remove uninforma-
tive variables but fails in colinearity reduction while the successive projections
algorithm (SPA) removes the collinear variables but cannot eliminate the uninforma-
tive influence (Centner and Massart 1996; Araújo et al. 2001). UVE–SPA, proposed
by Ye, Wang, and Min (2008), is a method that combines UVE and SPA. In this
technique, UVE is employed to select informative variables, and SPA follows to sel-
ect variables that have minimum redundant information from the informative vari-
ables. After UVE-SPA, multiple linear regression (MLR) was employed to build the
model. PLS employs latent variables instead of real variables while MLR models
directly use the real variables that make them simpler and easier to interpret. How-
ever, MLR models usually suffer from the colinearity between variables (Næs and
Mevik 2001). UVE–SPA solves this problem and has been reported in the food
industry and agriculture (Wu et al. 2009; Wu et al. 2010).

Most of the research has used the whole spectrum of near-infrared spectroscopy
(Balabin, Safieva, and Lomakina 2010; Dupuy et al. 2010; Puchert et al. 2010; Sinelli
et al. 2010; Xiong et al. 2010), whereas only a few studied the application of MWNIR
(Vincelette et al. 2008), but none have applied the technique to determine a pesticide active
ingredient. Deltamethrin is a widely used insecticide used to protect crops from Lepidop-
tera, Homoptera, andHemiptera (Mestres and Mestres 1992; Anadon et al. 1996). In this
paper, MWNIR is used to develop a rapid and reliable method to determine the active
ingredient in deltamethrin formulation instead of full-range NIR. PLS and MLR were
used to establish quantitative models. UVE, SPA, andUVE–SPAwere used to investigate
the effective variables in modeling and their efficiencies were also compared.

MATERIALS AND METHODS

Samples

Three batches of the commercial formulation were used to prepare sixty
samples with a certain amount of deltamethrin formulation, dimethylbenzene, and

PESTICIDE BY MEDIUM WAVE NEAR-INFRARED SPECTROSCOPY 2571
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technical deltamethrin for spectra collection. In order to avoid colinearity, the three
reagents were added randomly. The gross mass of each sample was around 15 g and
the concentration ranged from 0.11% to 5.39% (w=w). All samples were randomly
divided into the calibration set (forty samples) and the prediction set (twenty sam-
ples) and the same divided sample sets were used in full-spectrum and UVE–SPA
models. Cross validation was firstly performed on the calibration set to build the
model and then prediction was made with the prediction set to determine the
efficiency of the model. The exact content of deltamethrin in the commercial
formulation was determined by HPLC.

Chemicals

The commercial deltamethrin formulation (25 g=L) was purchased from Bayer
Crop Science, China. Technical deltamethrin (98.1%) was obtained from Jiangsu
Huangma Agrochemicals, China. Dimethylbenzene (99.0%) and carbon tetra-
chloride (99.0%) were purchased from Beijing Chemical Works, China.

Instrumentation

NIR spectra were collected in transmission mode using vials of 2-mm path
length with a Fourier transform spectrometer (Spectrum One NTS, PerkinElmer,
USA). The spectral data were collected over the range 4000 cm�1–12500 cm�1 (resol-
ution 8 cm�1, 64 scans) at room temperature. The cuvette was rinsed with carbon
tetrachloride between the samples. Spectra acquisition and instrument control were
performed by Spectrum (v 5.0, PerkinElmer, USA).

Datasets and Software

The spectra files were imported into Matlab (v7.11, MathWorks, USA) for
data analysis. The scripts used in this study are based on Centner and Massart
1996, Ye et al. 2008, and Paiva et al. 2012. NIR data matrix were composed of 60
rows (samples) and 4251 columns (variables).

Theory

PLS considers a (n� p) spectral matrix X including p predictor variables and
(n� 1) concentration vector y as response variables for n samples. PLS first decom-
poses the spectral matrix X and the concentration vector y as their own score matrix,
loading matrix, and residual. The linear regression is made between the score matrix
of X and y � b is the regression coefficient of the calibration set. In prediction, the
score matrix of the unknown samples Tn is calculated from Xn based on the loading
matrix of X and the prediction result yn is obtained as Eq. 1.

yn ¼ TnbQ ð1Þ

where Q is the loading matrix of y. In order to obtain a good estimates of b, the PLS
model needs to be calibrated on samples that span the variation in y.

2572 G. TANG ET AL.
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UVE is a method of variable selection based on stability analysis of the
regression coefficient b. The details of UVE are described in Centner and Massart
(1996), and its main principles are summarized as follows. First, PLS regression is
performed on instrumental response data Xcal and the property values y of cali-
bration set, and the optimal number of latent variables (LVs) is determined. Second,
a noise matrix with the same size of the Xcal is generated and the elements are mul-
tiplied with a small constant to make their impact on the model negligible. The noise
matrix is appended to the original one to form an extended matrix with twice as
many variables as the original one. Third, PLS models are made on the extended
matrix and y in manner of leave-one-out cross validation. This leads to a matrix
of b values with as many rows as samples and one column for each variable, both
original and random. The c value of each variable is calculated as the average of
the b values of each column divided by the standard deviation of that column.
The cut-off value is set as the maximum of absolute value c among the random vari-
ables. Every original variable with equal or lower absolute value of c is assumed to
contain nothing but noise and is eliminated.

SPA employs simple projection operations in a vector space to obtain subsets
of variables with small colinearity. A detailed descriptions of SPA is available in
Araújo et al. (2001) and its main principles are summarized as follows. First, the
maximum number of variables N to be selected was established. Then, starting from
each variable, SPA yields K (the total number of variables) sets of selection of N vari-
ables. The optimal number of variables are determined on the performance in MLR
calibration. After the SPA calculation, MLR was done with the retained variables to
obtain the final regression results. In this study, the maximum number of retained
variables in all SPA calculations was set as ten.

In UVE–SPA, UVE is first made with the raw spectral data and followed by
SPA with the retained variables. In contrast to UVE, in UVE–SPA, as the following
SPA can further eliminate the collinearity between the variables, MLR is able to per-
form with the retained variables instead of seeking latent variables with the help of
PLS. Compared with SPA, as UVE-SPA first removes the uninformative variables
before making the SPA calculation, the investigation of SPA calculation can be more
efficient when less interference is introduced. After the selection, MLR is performed
to obtain the final result.

RESULTS AND DISCUSSION

The collected NIR spectra of the samples are shown in Figure 1. The peaks
from 4000 cm�1 to 5200 cm�1 are the first combination of stretching vibration of
C-H and second overtone of C=O; peaks in the range of 5600 cm�1–6200 cm�1 are
attributed to the first overtone of C-H; peaks in the range of 7000 cm�1–7400 cm�1

and 8300 cm�1–8900 cm�1 are the second combination and second overtone of
C-H, respectively (Kelly and Gallis 1990).

Full-Range NIR Models

Spectral pretreatments were usually employed in modeling to eliminate
influences such as baseline drift. Sophisticated models were employed using spectral
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pretreatments including derivative, smoothing, and normalization, but they did not
make improvements compared to the non-preprocessed model. Therefore, no pre-
treatments were used. The results of the full-range NIR models are shown in
Table 1, and models with variable selection techniques all outperformed the
full-range NIR PLS model which indicates the redundancy of the full-range NIR
and its impact on modeling. With UVE, 60% variables were eliminated and better
results were obtained by the following PLS model. However, MLR was unable to
perform after UVE as redundancy still existed. On the contrary, just several variables
were retained after SPA, and MLR could run successfully as redundancy was almost
eliminated. The SPA models also achieved better results than the UVE–PLS model.

Table 1. Results of full-range near-infrared models in determination of active ingredient in deltamethrin

formulation

Method

Partial

least

squares

factors Variables

Root mean standard

error of

cross-validation (%)

Root mean

standard error of

prediction (%)

Partial least squares 6 4251 0.1250 0.1320

Uninformative variable

elimination-partial least squares

6 1558 0.0942 0.0854

Successive projections

algorithm-multiple linear regression

– 8 0.0854 0.0512

Uninformative variable

elimination-successive projections

algorithm-multiple linear regression

– 9 0.0432 0.0396

Figure 1. Near-infrared spectra of the deltamethrin formulation.
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As SPA just removed the collinearity between the variables, but failed to deal with
the uninformative influence, the SPA model was not as efficient as the UVE–SPA
model. It should be noted that although the UVE-SPA model gave the best results,
more variables were employed in the UVE–SPA model than the SPA model. It can
be interpreted as some useful information was recognized as collinearity and
removed with just SPA selection. However, with UVE–SPA, as the uninformative
ones were initially eliminated by UVE, those useful variables were reserved after
SPA. Figure 2 illustrates the variables selected by SPA and UVE–SPA with the del-
tamethrin technical spectrum (dissolved in carbon tetrachloride). Some ‘‘baseline’’
variables were reserved by SPA and UVE–SPA. Meanwhile, variables in the two
main absorption wavebands of deltamethrin, i.e., 4000 cm�1–4900 cm�1 (the first
combination of stretching vibration of C-H and second overtone of C=O) and
5700 cm�1–6200 cm�1 (the first overtone of C-H) were also employed. The differ-
ences occurred because UVE-SPA selected more informative variables than SPA
(narrowed in the range from 4500 cm�1 to 4700 cm�1). The better results demon-
strated that UVE–SPA was more efficient than SPA.

MWNIR Models

As significant differences were obtained, no spectral pretreatments were used.
As shown in Table 2, the MWNIR PLS model far surpassed the full-range NIR PLS
and its results were almost comparable to the NIR–UVE–SPA model, which further

Figure 2. Selected variables by successive projections algorithm and uninformative variable

elimination-successive projections algorithm near-infrared models under contrast with deltamethrin

technical spectrum (a) successive projections algorithm and (b) uninformative variable elimination-

successive projections algorithm.
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indicated the redundancy of the full-range NIR and efficiency of MWNIR in
analysis of deltamethrin. After UVE, 75% variables were eliminated and better
regression results were obtained. In contrast to the NIR–UVE–PLS model, fewer
PLS factors were used in the MWNIR-UVE-PLS model for a leaner variable subset
was introduced to the following PLS regression. In contrast to the full-range NIR
models, promotion of SPA was not so visible as the MWNIR PLS and UVE–PLS
models were approaching optimal. Nevertheless, the SPA and UVE–SPA models
of MWNIR achieved better results than the full-range NIR approaches even with
fewer variables in MLR calculation. It should be noted that the SPA model had a
slim advantage over the UVE–SPA model. Since the MWNIR waveband contained
the important information of the interest and uninformative variables were fewer
than the full-range NIR, SPA was sufficient to deal with this problem. The variables
selected by SPA and UVE–SPA, in contrast with the deltamethrin technical
spectrum in carbon tetrachloride, are presented in Figure 3. The two methods
selected the variables in the range of 5700 cm�1–6000 cm�1 (first overtone of C-H),
whereas differences between the two methods were the selection of the narrowed
variable. The variable selected by the SPA model lay in the range of the second
combination of C-H while the one retained by UVE–SPA was attributed to the
second overtone of C-H. On the other hand, variables selected by MWNIR SPA
and UVE–SPA models were different from those in the full-range NIR models.
Variables selected in full-range NIR model were scattered across the spectrum while
just one variable was in the range of MWNIR. As UVE and the following SPA just
focused on eliminating the variables with low signal-to-noise ratio and dealt with the
collinearity between the variables retained by UVE, the variables in the other parts
of spectrum had equal probability to be selected when full-range NIR was used to
model. In addition, MWNIR MLR models surpassed those of full-range NIR both
in the number of variables selected and the regression results. Fewer variables were
imported for variable investigation, fewer interferences were introduced into the
MWNIR model, and the performance was enhanced.

Table 2. Results of medium near-infrared models in determination of active ingredient in deltamethrin

formulation

Method

Partial least

squares

factors Variables

Root mean standard error

of cross-validation (%)

Root mean standard

error of prediction (%)

Partial least squares 6 1751 0.0572 0.0558

Uninformative variable

elimination-partial

least squares

4 414 0.0384 0.0349

Successive projections

algorithm-multiple

linear regression

– 5 0.0404 0.0274

Uninformative variable

elimination-successive

projections algorithm-

multiple linear

regression

– 5 0.0439 0.0284
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These results demonstrate that MWNIR was capable of establishing an
efficient model to quantify the active ingredient because it included the important
information of the functional groups in NIR and its signal intensity was well suited
for chemometric analysis. This analysis may be performed using in situ deter-
mination by portable MWNIR instrumentation. UVE–SPA was demonstrated
to be efficient in dealing with the redundancy that not only further simplified but also
improved the model. In addition, UVE–SPA was more efficient when redundancy
was severe (e.g., full-range NIR). When collinearity was the primary contradiction
(e.g., MWNIR), the advantages of UVE–SPA were less obvious and SPA was
sufficient for the analysis.

CONCLUSIONS

MWNIR was successfully applied to the determination of a pesticide active
ingredient by conventional PLS regression. Results indicated that MWNIR was
well suited for this analysis and could substitute for full-range NIR modeling.
UVE–SPA was shown to be a powerful variable selection approach that not only
eliminated uninformative but also collinear variables, which made the model
much simpler and more efficient. The feasibility of MWNIR in pesticide active
ingredient determination reduces the cost and instrument requirements, allows
in situ analysis, expands applications of NIR, and provides a valuable reference
for pesticide quality control.

Figure 3. Selected variables by successive projections algorithm and uninformative variable elimination-

successive projections algorithm medium near-infrared models in contrast with deltamethrin technical

spectrum (a) successive projections algorithm and (b) uninformative variable elimination-successive

projections algorithm.
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