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In this study, a new wavelength interval selection algorithm named as interval combination optimization
(ICO) was proposed under the framework of model population analysis (MPA). In this method, the full
spectra are divided into a fixed number of equal-width intervals firstly. Then the optimal interval
combination is searched iteratively under the guide of MPA in a soft shrinkage manner, among which
weighted bootstrap sampling (WBS) is employed as random sampling method. Finally, local search is
conducted to optimize the widths of selected intervals. Three NIR datasets were used to validate the
performance of ICO algorithm. Results show that ICO can select fewer wavelengths with better prediction
performance when compared with other four wavelength selection methods, including VISSA, VISSA-
iPLS, iVISSA and GA-iPLS. In addition, the computational intensity of ICO is also economical, benefit
from fewer tune parameters and faster convergence speed.
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1. Introduction large number of variables and relatively few samples due to the

constraint of actual experimental conditions and costs. Multivariate

Spectroscopic datasets collected by high throughput in-
struments are usually faced with the non-deterministic polynomial
time (NP)-hard problem. This kind of datasets usually consists of
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calibration techniques such as principal component regression
(PCR) and partial least squares regression (PLS) are usually
employed to address this problem by extracting latent information
from spectroscopic dataset. However, more and more researches
have proved that variable selection is still beneficial for these
multivariate calibration techniques from both experimental and
theoretical aspects [1—-5]. The benefits of variable selection can be
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summarized in four main aspects: (1) the prediction ability of
calibration model can usually be improved by eliminating unin-
formative or interfering variables; (2) new calibration model based
on informative variables will be easier to interpret; (3) the
computational speed of new model will be boosted; (4) low cost of
dedicated online or inline analytical instrument with less spectral
channels may be produced under the guide of variable selection [6].

In essence, variable selection is aimed to find an optimal com-
bination of variables for the best prediction performance. However,
as the number of variable combinations grows exponentially along
with the increase of variables, the rough search is always imprac-
tical. Thus, a large number of variable selection methods have been
proposed based on different strategies in the past decades, such as
stepwise strategy, e.g. forward selection and backward elimination
[7]; variable ranking strategy based on parameters of PLS model
[8—10], e.g. loading weights [11,12], regression coefficients [13,14],
variable in projection (VIP) [15], stability [16—19], and selective
ratio [20]; optimization strategy based on artificial intelligent al-
gorithms, e.g. genetic algorithm (GA) [21], simulated annealing (SA)
[22,23], particle swarm optimization (PSO) [24] and ant colony
optimization (ACO) [25]; projection strategy, e.g. successive pro-
jection algorithm (SPA) [26]. Besides, it is worth noting that model
population analysis (MPA) strategy proposed by Liang's group can
also be used for variable selection [27]. Based on this strategy, a
series of variable selection methods has been proposed in recent
years, such as iteratively retaining informative variables (IRIV) [28],
variable combination population analysis (VCPA) [29], variable
iterative space shrinkage approach (VISSA) [30,31], bootstrapping
soft shrinkage (BOSS) [32].

As a general framework for designing new chemometrics or
bioinformatics algorithms, MPA emphasizes that information
should be extracted by analyzing a number of sub-models statis-
tically, because the results or parameters of one single model are
not always reliable. In detail, MPA usually contains three stages: (1)
sub-datasets generation procedure, where random sampling
method is applied to obtain a series of sub-datasets from variable or
sample space, such as jackknife sampling [33], bootstrap sampling
(BSS) [34], binary matrix sampling (BMS) [35]; (2) modeling pro-
cedure, where a series of sub-models are established based on sub-
datasets generated in the previous step; (3) statistical analysis
procedure, where interested outputs (e.g., RMSECV value) of all
these sub-models are analyzed statistically.

Advantages of using MPA strategy to variable selection can be
concluded in two aspects: (1) MPA extracts information from a
large number of sub-models, which is beneficial for avoiding the
uncertainty of one single model. (2) Synergistic or combination
effects between different variables are more possible to be retained
by MPA since random variable combinations are generated during
the optimization process. Additionally, the strategy of soft
shrinkage, which can avoid removing important variables by
mistake, can also be regarded as an advantage of some new
methods (e.g. VISSA and BOSS) developed from MPA. By this
strategy, insignificant variables are not eliminated directly, but are
assigned with a smaller sampling weight, ensuring that the process
of optimization is implemented in the soft shrinkage way. Besides,
weighted binary matrix sampling (WBMS) [30] and weighted
bootstrap sampling (WBS) [36] are also two commonly used
weighted random sampling methods. Up to now, there is no com-
parison of their performance yet.

Certainly, variable selection methods based on MPA have some
drawbacks. First, their computational burden is much heavier than
other methods, because they not only need to establish a large
number of sub-models in each loop, but also require many loops to
realize iteration convergence. Secondly, overfitting of these
methods is at high risk due to the large number of variables

combination [3]. Specially, WBMS generates sub-datasets too
strictly depending on the sampling weights, even if the sampling
weight of one variable becomes 1 by chance, it still has to be
included in the future iterations.

Undoubtedly, for most kinds of spectral data, especially for near
infrared spectroscopy, the selection of wavelength intervals seems
more reasonable than single spectral points [3]. Because the
informative variables within specific absorbing bands certainly
contain similar information, which may lead some individual var-
iable selections to chaos runs [37]. In contrast, interval selection
methods can provide a more stable result. Chemical meaning can
also be explained much easier. Furthermore, the selection of in-
tervals can decrease the computational burden by reducing the
number of possible combinations. It was more likely to avoid
selecting single wavelengths in the noisy area which may have
spurious correlations with the interested property [3]. Hence, there
are a lot of spectral interval selection methods reported, such as
interval partial least squares (iPLS) [38], moving windows PLS
(MWPLS) [39] and many variants based on them [40—43]. Besides,
some strategies commonly used for individual variable selection
such as SPA [44], GA [45,46], ACO [47], etc. have also been modified
for selecting informative intervals in recent years. However, MPA
strategy and soft shrinkage strategy have rarely been applied to
spectral interval selection.

New wavelength interval selection named as interval combi-
nation optimization (ICO) is proposed by coupling WBS with MPA,
which can address drawbacks mentioned above together. In this
study, three NIR datasets were applied to validate the performance
of ICO. For comparison, four wavelength selection methods,
including VISSA, interval VISSA (iVISSA), VISSA-iPLS and GA-iPLS,
were also performed as references.

2. Theory and algorithm
2.1. Weighted binary matrix sampling (WBMS)

WBMS provides a random sampling strategy using a binary
matrix [30]. In this K x P size binary matrix, K is the total sampling
number and P is the number of objects. In each column of the bi-
nary matrix, “1” represents the object will be retained for modeling,
while “0” represents the object will be excluded, and the ratio of “1”
in each column will be updated according to the weight in each
iteration. After the ranking order of each column is permutated, a
new binary matrix is generated. In this new binary matrix, each row
represents one random sampling procedure. Obviously, the greater
the weight is, the greater the selected probability. And if the weight
of one object is 1, it will be selected in every random sampling
procedure, which means that it will have no possibility to be
excluded. If the weight of one object is 0, it has no possibility to be
retained by any random sampling procedure, which means that it
will be eliminated.

2.2. Weighted bootstrap sampling (WBS)

WBS is a random sampling technique with replacement derived
from BSS [36]. In WBS, one weight is allocated to one object firstly,
which is between 0 and 1. Then WBS selects objects with a strategy
like the roulette wheel. In this strategy, each object is corre-
sponding to one slot on the roulette, and the size of which is pro-
portional to the weight of the corresponding object. One object is
selected in each run of this roulette. The theoretical selected
probability of one object in each run can be calculated according to
Equation (1). Therefore, even if the weight of one object reaches 1, it
still has a chance to be excluded.
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where n is the number of objects. In one randomly sampling pro-
cedure of WBS, the roulette needs to repeat R times, which is
determined by the average number of objects in the previous step
(note that the initial R is equal to n), and the objects which are
selected no less than once will be retained as one object subset.
Then we can get a large number of new subsets by running WBS
repeatedly, and the average number of selected objects in these
new subsets will be about 0.632 times of the previous ones. Thus,
the number of selected objects can be shrunk automatically by
implementing WBS iteratively.

pi= (1)

2.3. Interval combination optimization (ICO) algorithm
As a new interval selection method under the framework of

MPA, the flowchart of ICO algorithm is illustrated in Fig. 1. The
procedure of ICO can be summarized in the following steps:
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Fig. 1. Flowchart of ICO algorithm.

(1) The spectra are split into N (e.g., 40) equal-width intervals.

(2) WBS is used to generate M (e.g., 1000) random combinations
of these intervals. Note that the initial weight of each interval
is set to 1.

(3) RMSECV value of each interval combination is calculated by
PLS algorithm and five-fold cross validation.

(4) Extract a ratio o (e.g., 10%) of best interval combinations with
lowest RMSECV values, the mean value of these RMSECV
values (denoted as RMSECVpean) is recorded.

(5) Count the appearance frequency of each interval in the best
interval combinations, and the new weight of interval i can
be calculated according to Equation (2).

_—

;=
kbest

(2)

where f; represents the appearance frequency of interval i in the
best interval combinations, ke is the number of the best interval
combinations.

(6) If the RMSECVpean decreases, the loop goes on by repeating
step (2)—(5). Otherwise, the loop terminates.

(7) Find the interval combination with the lowest RMSECV value
in the final iteration, which will be considered as the best
interval combination.

(8) Optimize the widths of the finally selected intervals. In this
step, the variables near the boundaries of finally selected
intervals will be evaluated by comparing the prediction er-
rors (RMSECV) of the sub-models with and without them
successively. If the RMSECV value of the sub-model without
one variable is lower than that of with it, it will be removed.
Otherwise, it will be retained.

2.4. Brief introduction of compared methods

2.4.1. Variable iterative space shrinkage approach (VISSA)

VISSA is an optimization algorithm based on MPA and WBMS
[30], main procedures of which can be summarized into three main
steps. Step 1: WBMS is used to generate a number (e.g., 5000) of
sub-datasets, where the initial weight of each variable is set to 0.5.
Step 2: a PLS model is built on each sub-dataset, prediction error
(RMSECV) of which is recorded. Step 3: MPA is applied to extract
information from the prospective of prediction errors of all these
sub-models. The appearance probability of each variable in the 10%
best models is calculated, which will be used as the new weight of
each variable in step 1.

In general, the weight of each variable is updated continuously
by repeating these three steps during the whole optimization
procedure. From the introduction of WBMS in 2.1 we know that if
the weight of one variable reaches 1, it will be included in the final
set. On the contrary, if the weight of one variable reaches 0, it will
be excluded from the final set. If the weight of one variable is be-
tween 0 and 1, it will be regarded as candidate variable need to be
evaluated in the next iteration. Finally, VISSA is terminated auto-
matically when the weights of all variables are constant.

2.4.2. iVISSA algorithm

Interval variable iterative space shrinkage approach (iVISSA) is
an iterative method for wavelength interval selection proposed by
Deng et al. [31]. In this method, the location and combination of
informative individual wavelengths are searched by VISSA strategy
in the global search procedure. The width of each interval is opti-
mized in the local search procedure, which is implemented by the
same way in step (8) of Section 2.3. Finally the locations, widths and
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Table 1
Parameters of the GA optimization procedure in the GA-iPLS algorithm.

Population size: 30 chromosomes

On average, 5 variables per chromosome in the original population

Response: cross-validated explained variance % (the optimal number of latent
variables of PLS is determined by 5 fold cross-validation)

Maximum number of variables selected in the same chromosome: 30

Probability of cross-over: 50%

Probability of mutation: 1%

Maximum number of latent variables of PLS: 10

Number of runs: 100

The amount of evaluations: 100

combinations of the informative wavelength intervals are intelli-
gently optimized by implementing global search and local search
procedure alternatively.

2.4.3. VISSA-iPLS algorithm

VISSA-iPLS algorithm is proposed in this study firstly. In this
algorithm, the full spectra are divided into a number of equal-width
intervals, and then the optimal interval combination is searched
softly by VISSA strategy. Detail descriptions of VISSA strategy can be
founded in Section 2.4.1. Because the searching targets are reduced
significantly by the simple idea of iPLS, the computational burden
of VISSA-iPLS will be much less than VISSA. What's more, local
search is also conducted in VISSA-iPLS algorithm by the same way
in step (8) of Section 2.3. It should be noted that the biggest dif-
ference between VISSA-iPLS and ICO is that they employed
different randomly sampling methods.

2.4.4. GA-iPLS algorithm

GA-iPLS algorithm is a wavelength interval selection method
based on GA strategy [45,48]. Similar to VISSA-iPLS algorithm, the
full spectra are divided into a number of equal-width intervals
firstly, and then the combinations of these intervals are searched by
GA strategy. Detail descriptions of GA strategy can be founded in
Ref. [49] and the parameters of GA used in this study are listed in
Table 1. Because the selection results of GA strategy are always
varied due to the random components in its search process, the
selection frequency of each interval in 100 iterations is always
calculated. Then PLS models are built on interval combinations

Table 2

Results of ICO with different parameters on corn dataset (the number of intervals
was set to 40). M represents the number of random combinations generated in each
iteration, o represents the extract ratio of best combinations, nVAR represents the
number of selected variables; nLV represents number of latent variables, the number
in parentheses is standard deviation of results in 20 repeated runs.

consisted of 1, 2, 3, 4 ... intervals with the highest selection fre-
quencies respectively, and the interval combination with the lowest
RMSECV value will be selected finally.

3. Experimental
3.1. NIR spectra of corn samples

This benchmark NIR datasets of corn samples are available at the
website: http://www.eigenvector.com/data/Corn/index.html. NIR
spectra measured by the m5 NIR spectrometer were used in this
study. The spectra were acquisitioned within the range
1100—2498 nm at intervals of 2 nm. Thus, each spectrum consists of
700wavelength points. The protein content (%, w/w) was consid-
ered as property of interest. In addition, 80 samples were split into
calibration set (60 samples) and validation set (20 samples) ac-
cording to the SPXY algorithm [50].

3.2. Diffuse reflectance NIR spectra of soil samples

This dataset was downloaded at the website: http://www.
models.life.ku.dk/NIRsoil. It consists of 108 samples generated at
a long-term field experiment in Abisko, northern Sweden (68°21'N
18°49’E) [51]. The spectra were recorded within the range of
400—2500 nm at 2 nm intervals. Soil organic matter (SOM) content
(%, w/w) was considered as the interested property in this study,
which was measured as loss on ignition at 550 °C. After the deletion
of six outliers which were detected by the Monte-Carlo outlier
detection approach [52], the remaining 102 samples were split into
calibration set (62samples) and validation set (40 samples) ac-
cording to the SPXY algorithm [50].

3.3. Transmittance NIR spectra of pharmaceutical tablets

655 transmittance spectra of pharmaceutical tablets were
downloaded from the web of http://software.eigenvector.com/
Data/tablets/index.html. The spectra measured on Instrument I
(Foss NIR Systems 6500 spectrometer) were used in this study. The
spectra were recorded within the range of 600—1898 nm at an
interval of 2 nm. The active pharmaceutical ingredient (API) con-
tent (%, w/w) of each individual tablet was analyzed by HPLC
method. This dataset has been split into three different files, thus
155 spectra in the calibration file were used as calibration set, 460

Table 3
Results of different methods on three datasets. nVAR represents the number of
selected variables; nLV represents number of latent variables.

M o nVAR nLV RMSEP Time/s Datasets Methods nVAR nLV RMSEP Time/s
100 0.05 70.70 (5.39) 10.00 (0.00) 0.0119 (0.0045) 8.28 (0.76) Corn protein PLS 700 10 0.1442 0.14
0.10 69.30(1.34) 10.00 (0.00) 0.0112(0.0016) 9.43 (0.60) VISSA 172 10 0.1102 3027.63
0.20 69.95 (4.25) 10.00 (0.00) 0.0110 (0.0021) 9.79 (0.75) iVISSA 241 10 0.1318 3946.88
030 71.20 (4.44) 10.00 (0.00) 0.0125 (0.0030) 10.57 (0.69) VISSA-iPLS 105 10 0.0196 107.33
040 73.65(9.20) 10.00 (0.00) 0.0204 (0.0105) 11.30(0.78) GA-iPLS 70 10 0.0118 118.83
0.50 85.30(42.90) 9.95(0.22) 0.0262 (0.0287) 12.06 (1.86) 1CO 69 10 0.0106 83.69
500 0.05 69.00 (0.00) 10.00 (0.00) 0.0106 (0.0000) 43.25 (1.85) Soil SOM PLS 1050 10 1.76 0.17
0.10  69.00 (0.00) 10.00 (0.00) 0.0106 (0.0000) 45.08 (1.06) VISSA 268 10 1.26 5008.11
0.20 69.00 (0.00) 10.00 (0.00) 0.0106 (0.0000) 48.33 (0.92) iVISSA 501 10 141 6387.31
030 69.00 (0.00) 10.00 (0.00) 0.0106 (0.0000) 52.53 (1.58) VISSA-iPLS 229 10 1.18 223.83
040 69.65 (1.73) 10.00 (0.00) 0.0111 (0.0017) 55.98 (1.78) GA-iPLS 182 10 1.12 145.09
0.50 71.20 (4.88) 10.00 (0.00) 0.0115 (0.0017) 55.87 (2.32) 1CO 131 10 0.93 159.06
1000 0.05 69.00 (0.00) 10.00 (0.00) 0.0106 (0.0000) 89.11 (2.93) Tablets API PLS 650 5 0.75 0.20
0.10  69.00 (0.00) 10.00 (0.00) 0.0106 (0.0000) 92.19 (2.17) VISSA 182 5 0.62 3075.00
0.20  69.00 (0.00) 10.00 (0.00) 0.0106 (0.0000) 96.33 (2.17) iVISSA 275 5 0.63 3679.47
0.30 69.00 (0.00) 10.00 (0.00) 0.0106 (0.0000) 102.45 (2.40) VISSA-iPLS 139 5 0.47 197.03
0.40 69.90 (4.02) 10.00 (0.00) 0.0110 (0.0019) 106.90 (5.83) GA-iPLS 48 5 0.65 120.11
0.50 71.15(5.98) 10.00 (0.00) 0.0118 (0.0037) 113.00 (4.98) ICO 34 5 0.42 99.33
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Fig. 2. NIR spectra of corn samples and wavelengths selected by different methods.

spectra in the validation file were used as validation set, and 40
spectra in the test file were used as test set.

3.4. Calculation and software

All computations were performed in MATLAB (Version 2011a,
the MathWorks, Inc.) on a general personal computer (configured
with Intel® Pentium® G630 CPU (2.7 GHz), 2 GB RAM, and Micro-
soft® Windows XP operating system). MATLAB codes of both VISSA
and iVISSA were downloaded from the web of http://www.
mathworks.com/matlabcentral/fileexchange on March 31, 2016.
ICO, GA-iPLS and VISSA-iPLS were all realized with home-made
codes which are available upon request.

3.5. Modeling strategy and model evaluation parameters

In this study, all the data was centered to have zero mean before
modeling. Partial least squares regression was used for modeling,
and the maximum number of latent variables was set to 10. The
optimal number of latent variables was determined by 5-fold cross
validation (ASTM E1655-05). The quality of the model is assessed by
the root mean squared error of prediction set (RMSEP), which is

calculated according to Equation (3).

n 5 02
RMSEP = Zizl (yl yl) (3)
n

where n is the number of samples, yi and yi represent the measured
and predicted values of the i th sample, respectively.

4. Results and discussion
4.1. The influence of different parameters on ICO algorithm

It should be noted that there are only three parameters
including N, M, a need to be optimized in ICO algorithm, which is
relatively few when compared with some intelligent optimization
algorithms such as GA, ACO, and PSO. Firstly, as pointed by Ref. [53],
if N is too low, the interval will be too broad, which may lead to the
neglect of some narrow peaks; if N is too large, the results will rely
too much on a local scale, and computational burden of the
searching procedure will be increased. In consideration of the fact
that the actual width of most NIR spectral absorbance peaks is
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Fig. 3. Sampling weights of each interval in the optimization process of (a) ICO, (b)
VISSA-iPLS and (c) GA-iPLS on corn dataset.

usually around 20—100 nm, 20 or 40 intervals are commonly rec-
ommended in most literature [42]. Thus, in order to test the ability
of ICO for retaining the synergistic effect between different in-
tervals more adequately, N was set to 40 for all datasets in this
study. However, since the width of intervals is fixed, we should pay
attention to two kinds of wavelengths, including informative
wavelengths outside and noise or uninformative wavelengths in-
side of the finally selected intervals. Therefore, local search also
should be conducted to optimize the widths of finally selected in-
tervals respectively according the continuity of spectra.

The other two parameters M and o represent the number of
random combinations need to be generated and the extracting ratio
of better combinations respectively. Because they are main

parameters for implementing MPA strategy, the influence of these
two parameters on the final results of variable selection methods
based on MPA has been discussed in previous literature [29,30,54].
From these literature, we can find that although all these methods
are not sensitive to these two parameters, larger M and lower a still
tend to generate more accurate and stable results. In addition, the
same conclusion can also be obtained when we take corn dataset as
example, and the results of ICO with different parameters on corn
dataset are displayed in Table 2. As was shown in this table, if M is
not large enough, e.g. 100, the results of ICO will be unstable no
matter how many does a set to, which can be proved by the stan-
dard deviation value of number of variables selected by ICO.
Whereas, if o is too large, e.g. 0.5, the results of ICO will also be
unstable due to the inclusion of some bad information. Further-
more, it's also worth noting that the computational time of ICO is
approximately proportional to M. Reasons may be that the
computation time of ICO is determined by two factors including M
and the number of iterations need to be conducted, whereas the
latter one was almost fixed due to the implementation of WBS.
Thus, in order to get stable results within appropriate computation
time, M and o were set to 1000 and 0.05 respectively in ICO
algorithm.

4.2. Analysis of protein content in corn samples

The results of different methods on corn dataset are displayed in
Table 3. As was shown in this table, all variable selection methods
show better predictive performance when compared with the full
spectra PLS model, which demonstrates the necessity of conducting
wavelength selection. From this table, we can also find that all three
interval selection methods GA-iPLS, VISSA-iPLS and ICO can select
fewer wavelengths with even better predictive performance in
much less computation time when compared with VISSA. It in-
dicates that the selection of spectral intervals rather than individual
wavelengths can not only reduce the computational burden of one
optimization strategy, but also help to improve the effectiveness of
selected wavelengths. In detail, all three interval selection methods
need to conduct optimization among only 40 intervals. Whereas,
VISSA should conduct optimization among 700 individual wave-
lengths, which will lead to much higher risk of overfitting.
Furthermore, we can also find that the performance of iVISSA is
even worse than VISSA in terms of both number of selected
wavelengths and RMSEP, which may also due to overfitting. As was
introduced in section 2.4.3, local search and VISSA were imple-
mented alternatively in iVISSA, which will increase its computa-
tional burden and risk of overfitting simultaneously.

Fig. 2 shows the NIR spectra of corn samples and wavelengths
selected by five different methods. As can be observed from
Fig. 2(a), wavelengths selected by VISSA are distributed across the
whole spectral range, which is consistent with its performance in
previous report [30]. It indicates that although VISSA can retain the
synergistic effect between different wavelengths more adequately,
it is still faced with high possibility of overfitting, which is similar
with the fact that GA-PLS can hardly perform well when there are
more than 200 variables need to be optimized [53]. The distribution
of selected wavelengths of iVISSA is displayed in Fig. 2(b), which is
quite similar with VISSA. We can also observe that some discrete
individual wavelengths in 1250—1320 nm and 2320-2350 nm
selected by VISSA have been expanded into continuous regions
selected by iVISSA through implementing local search strategy. It
demonstrates that although the finally selected wavelengths of
iVISSA are some continuous spectral regions, it still relies on
discrete wavelengths selected by VISSA to determine the location of
finally selected spectral interval.

Fig. 2(c)—(e) display the spectral regions selected by VISSA-iPLS,
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Fig. 4. NIR spectra of soil samples and wavelengths selected by different methods.

GA-iPLS and ICO respectively. It was shown that all these three
methods can select wavelengths from the regions of 1740—1820 nm
and 2130—2190 nm, which can be assigned to the first overtone of
C—H stretching and varied vibration combinations of N—H in pro-
tein structure respectively. Furthermore, these two regions have
been proved to be important for analysing protein content in
Refs. [13,55], indicating that these methods are both efficient
wavelength selection methods. However, VISSA-iPLS still selected
some more wavelengths outside of these two regions, such as
1670—1710 nm and 2192—2224 nm, which may explain why VISSA-
iPLS gave slightly worse predictive performance than ICO. In
addition, we can find that there is only very small difference be-
tween the wavelengths selected by ICO and GA-iPLS, which is
caused by local search in ICO.

Fig. 3(a) and (b) show the sampling weights of each interval in
the iteration process of ICO and VISSA-iPLS respectively. In these
figures, the sampling weight of each interval is illustrated by
different colors. In detail, if one interval is in dark red, its sampling
weight is 1; if one interval is in dark blue, its sampling weight is 0.
And the sampling weight of one interval in other color is between
0 and 1. As was shown in these figures, the optimal interval

combination is searched in a soft shrinkage manner in both of these
two methods. In detail, uninformative intervals were not elimi-
nated directly, but were assigned to smaller sampling weights,
which can help to lower the risk of removing informative intervals
by mistake. In Fig. 3(b), we can find that the sampling weight of one
interval will always be 1 in the next iterations, as long as it has the
chance to become 1. The reason for this phenomenon is that WBMS
generates random combinations of different intervals according to
sampling weights strictly, which has been described in Section 2.1.
In contrast, even if the sampling weights of some informative in-
tervals become 1 in the iteration process of ICO, they still have a
chance to be excluded in the next iterations. For example, in
Fig. 3(a), although the sampling weight of 30th interval has become
1 in the 8th iteration, its sampling weight can still be less than 1 in
the 9th iteration. The reason is that WBS is a random sampling
method with replacements. Thus, ICO can ensure that every infor-
mative interval can still have a chance to be evaluated in the next
iteration, which is also beneficial for avoiding the problem of iter-
ation termination with local minimum.

After a number of iterations, the sampling weights of most in-
tervals will be decreased to 0 (dark blue) in the last iteration, which
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Fig. 5. Sampling weights of each interval in the optimization process of (a) ICO, (b)
VISSA-iPLS and (c)GA-iPLS on soil dataset.

means they will be excluded. However, there is a great difference
between the sampling weights of intervals retained in the last
iteration between these two methods. The sampling weight of all
the retained intervals in the last iteration of VISSA-iPLS can only be
equal to either 1 or 0, whereas, the sampling weight of some
retained intervals (e.g. 17, 18, 19, 20, 30th interval) in the last iter-
ation of ICO can still be equal to non-integer that is between 0 and 1.
It demonstrates that ICO can ensure that most retained intervals
still have a chance to be excluded even in the last iteration.

Fig. 3(c) show selected intervals in the iteration process of GA-
iPLS, and there are only two pure colors in this figure. Intervals in
deep red were selected; intervals in deep blue were excluded. In
this figure, we can observe that GA-iPLS always selects different
intervals in different iteration due to the crossover and mutation

step in the process of GA optimization. In order to find the optimal
interval combination, GA-iPLS has to conduct stepwise selection
according to the selected frequency of each interval. Finally, GA-
iPLS selected four intervals, which are the same with intervals
selected by ICO. It demonstrates that although the selection stra-
tegies of these two methods are different, they are both efficient for
informative interval selection in corn dataset.

4.3. Analysis of soil organic matter (SOM) content in soil samples

Results of different methods on soil samples are also displayed
in Table 2. It can be seen from this table that all variable selection
methods have made some improvement in terms of RMSEP when
compared with full spectrum PLS, which is similar with the results
of corn samples. In addition, we can also find that all three interval
selection methods (VISSA-iPLS, GA-iPLS and ICO) can select less
wavelengths with better predictive performance in much less
computation times when compared with iVISSA and VISSA, which
proves once again the effectiveness of implementing wavelength
selection on intervals rather than individual wavelengths. It also
should be noted that although iVISSA selects wavelengths based on
VISSA, its predictive performance cannot outperform VISSA. We
believe that this is due to overfitting, because iVISSA has to conduct
local search around too many individual wavelengths selected by
VISSA. In addition, ICO can give the best performance in terms of
both the number of selected wavelengths and RMSEP value among
all three interval selection methods, which indicates that ICO is
superior to VISSA-iPLS and GA-iPLS.

Fig. 4 shows the spectra of soil samples and wavelengths
selected by different methods. From this figure, we can observe that
the wavelengths selected by VISSA and iVISSA were also quite
similar, which is consistent with the results of corn dataset. They all
tend to select wavelengths from the whole spectral range, which
can hardly avoid selecting some wavelengths from uninformative
regions. On the contrary, ICO selected wavelengths from only four
spectral regions with the best predictive performance. These four
regions were around 1200 nm, 1430 nm, 1920 nm, 2300 nm
respectively, which have been proved to be related with the soil
organic matter in previous reports [56]. In detail, the wavelengths
around 1200 nm and 2300 nm are related to the second overtone of
C—H stretch and the combination absorbance of C—H vibration in
various kinds of organic matters respectively; the wavelengths
around 1430 nm can be attributed to OH groups in water or cel-
lulose, or to CH2 groups in lignin; the wavelengths around 1920 nm
can be assigned to OH groups in water or various functional groups
present in cellulose, lignin, glucan, starch, pectin and humic acid.

Fig. 4(c) shows wavelengths selected by VISSA-iPLS. As was
shown in this figure, we can find that VISSA-iPLS not only selected
wavelengths from some informative regions mentioned above, but
also selects wavelengths from some uninformative regions, such as
regions around 800 nm and 900 nm, which may explain its rela-
tively poor predictive performance when compared with ICO. In
contrast, GA-iPLS selected wavelengths only from informative re-
gions, which is shown in Fig. 4(d). However, GA-iPLS neglected one
informative region around 1200 nm, thus it still cannot give com-
parable predictive performance when compared with ICO.

The sampling weights of each interval during the iteration
process in ICO, VISSA-iPLS and GA-iPLS are displayed in Fig. 5. As
was shown in Fig. 5(a) and (b), we can find that the sampling
weights of most intervals during the iteration process in ICO are less
than 1, which can ensure that all the retained intervals can have a
chance to be excluded in the next iteration. In contrast, the sam-
pling weights of some intervals finally retained by VISSA-iPLS have
increased to 1 quickly in the first few times of iteration, which will
have no chance to be excluded in the next iteration. This is also the
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Fig. 6. NIR spectra of pharmaceutical tablets and wavelengths selected by different methods.

reason why VISSA-iPLS cannot select informative intervals as effi-
ciently as ICO. The deep reason to this phenomenon is also that they
employed different randomly sampling methods.

Fig. 5(c) shows intervals selected in the iteration process of GA-
iPLS. In this figure, we can observe that although the selected fre-
quencies of most informative intervals are relatively high, such as
19, 20, 29, 36, 37th interval, GA-iPLS still neglected the 16th interval
due to low selected frequency, which may explain why it cannot
give comparable predictive performance with ICO.

4.4. Analysis of active pharmaceutical ingredient (API) content in
single tablet

The results of different methods on pharmaceutical tablets are
also displayed in Table 3. In this dataset, the maximum number of
latent variables was set to 5 for avoiding overfitting, which is
different to the other datasets. This is because that the optimal
number of latent variables of the full spectra model is equal to 5,
which was much less than 10. From this table, we can find that
although the number of wavelengths selected by ICO was much less
than that of other four methods, it still gave the best predictive
performance, indicating that ICO is a more efficient wavelength
interval selection method. In addition, all three interval selection
methods consumed much less computation time than VISSA and
iVISSA, indicating that the selection of intervals rather than

individual wavelengths can improve the computation speed of one
selection strategy significantly.

Fig. 6 shows the spectra of pharmaceutical tablets and wave-
lengths selected by different methods. Different from the other two
datasets, a small spectral region (1800—1898 nm) with apparent
low S/N appears in the original spectra of pharmaceutical tablets.
However, both VISSA and iVISSA still selected some wavelengths
from this region. What's worse, iVISSA selected even more wave-
lengths from this region than VISSA, which may explain its poor
predictive performance. In contrast, all three interval selection
methods can avoid selecting wavelengths from this region, indi-
cating that the selection of wavelength intervals instead of indi-
vidual wavelengths can help to avoid selecting single wavelengths
in the noisy area which may have spurious correlations with the
responded property. Benefit from local search procedure in ICO and
VISSA-iPLS, the initially selected equal width intervals have become
spectral regions with different widths finally, which can be
observed in Fig. 6(c) and (e). However, GA-iPLS selected wave-
lengths from only one broad region around 1200 nm, which are
shown in Fig. 6(d). It may explain why it gave worse predictive
performance than other wavelength selection methods.

Fig. 7 shows the sampling weights of each interval during the
iteration process in ICO, VISSA-iPLS and GA-iPLS respectively. As
was shown in this figure, we can observe that 39th and 40th in-
terval in the low S/N regions were excluded through the whole
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Fig. 7. Sampling weights of each interval in the optimization process of (a) ICO, (b)
VISSA-iPLS and (c) GA-iPLS on pharmaceutical tablets dataset.

iteration process of all three interval selection methods, which
demonstrates once again the advantage of conducting selection on
wavelength interval. Furthermore, ICO and VISSA-iPLS conducted
10 and 14 iterations to reach iteration convergence respectively,
indicating that the convergence speed of ICO is faster than VISSA-
iPLS. In contrast, GA-iPLS didn't converge after 100 iterations,
because there are too many random components in GA strategy.
Hence, although GA also generated many different interval com-
binations during the process of optimization, some important in-
tervals still have no chance to get selected frequencies high enough
to be selected finally, because most selected intervals were mainly
around the 19th interval (Fig. 7(c)). This phenomenon also indicates
that the reason why GA-iPLS failed to find the optimal interval
combination in this dataset.

5. Conclusion

A new wavelength interval selection method named as ICO was
proposed by coupling MPA and WABS in this study. In this method,
spectral interval was used instead of individual wavelengths. Then,
the optimal combination of spectral intervals can be searched in a
soft shrinkage mode. Moreover, the widths of finally selected in-
tervals can also be optimized in ICO automatically. Three different
NIR spectral datasets were applied to validate the performance of
ICO. Results showed that, ICO can select the optimal wavelength
interval combination with the best prediction performance effec-
tively. It demonstrates that ICO not only inherits the advantages of
MPA and soft shrinkage strategy, but also overcomes the disad-
vantages of WBMS by introducing appropriate scales of random
components into the sampling step with WBS. Furthermore, it was
also proved that the selection of interval rather than individual
wavelengths can indeed reduce the risk of overfitting, as well as
computational burden of MPA. Hence, ICO may be a good alterna-
tive wavelength selection method for spectroscopic data.
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