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A novel method, named as modeling indicator determined (MID) method, based on two model evaluation pa-
rameters i.e., root mean square error of prediction (RMSEP) and ratio performance deviation (RPD), is proposed
to employ high-level fusion for quantitative analysis. The twoMIDmethods of root mean square error of predic-
tion weighted (RMSEPW) method and ratio performance deviation weighted (RPDW) method are put forward
on the basis of the model evaluation indicators from the individual models. Performance of RMSEPW method
and RPDWmethod are evaluated in terms of the predictive ability of root mean square error of prediction for fu-
sion (RMSEPf) through the fusedmodels. The twoMIDmethods are applied to UV–visible (UV–vis), near infrared
(NIR) andmid-infrared (MIR) spectral data of active ingredient in pesticide, and gas chromatography-mass spec-
trometer (GC–MS) and NIR spectral data of n-heptane in chemical complex for high-level fusion. Moreover, the
results are comparedwith the individualmethods. As a result, the overall results show that the twoMIDmethods
are promising with significant improvement of predictive performance for high-level fusion when executing
quantitative analysis.
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1. Introduction

Data fusion [1,2], as an emerging branch in chemometrics, is a proce-
dure of integrating data obtained from different analytical techniques
into a single global model. It has become a vital important tool to com-
bine the data of different analytical techniques, and makes a compre-
hensive use of these data for qualitative and quantitative analysis.
Data fusion techniques are commonly fallen into three categories
[3,4]: low-level data fusion, mid-level data fusion and high-level data
fusion. Low-level data fusion is a cohesion of the original data matrix
fromdifferent sensors, however, the final array contains a great number
of variables, which in return takes a long time for analysis. Mid-level
data fusion is to concatenate the features extracted from individual sen-
sors by variable selectionmethods. High-level data fusion is executed to
merge the results of each sensor and thus produce a final response via
the individual results.

High-level data fusion is an approach to combine the predictive re-
sults from two ormoremodels with the consideration of all the individ-
ual methods [5]. As far as we know, the high-level fusion is mainly
focused on classification issues [6–12] and rare research is focused on
quantitative analysis. There are multiple approaches for data fusion in
classification issues such as majority vote [13], naive Bayes approach
[14], Dempstere-Shafer's [15] method and so on. Generally, the classifi-
cation results of the fusion method might perform better than individ-
ual models. As has been stated, high-level fusion is performed to
produce the results by combining all individual sensors. Therefore, it is
essential to assign each sensor a weight according to their own contri-
butions. Under this way, the results of individual methods are fused
by different weighted coefficients, and high-level fusion is employed
to execute quantitative analysis with the modeling indicator deter-
mined (MID) method, which is relying on the original models of partial
least squares (PLS). PLS regression has been extensively used for devel-
oping models owing to its outstanding ability in overcoming deviations
caused by effects such as spectral bands overlapping and components
interacting [16]. PLS regression is a commonly used multivariate
method by decomposing the spectral and concentration arrays simulta-
neously so as tomake themodel suitable to extract themaximum infor-
mation from the spectra [17,18]. Root mean square error of prediction
(RMSEP) and ratio performance deviation (RPD) are twomodel evalua-
tion indicators derived from PLSmodels. Specifically, RMSEP [19,20] is a
parameter that utilized to evaluate the predictive ability of the model,
whereas RPD [21,22] is an indicator for evaluating the established
model. As a result, two MID methods of root mean square error of pre-
diction weighted method (RMSEPW) and ratio performance deviation
weighted method (RPDW) are proposed to employ high-level fusion
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Fig. 1. Scheme for explanation of high-level fusion for quantitative analysis.

Fig. 2. Scheme for explanation of RMSEPW and RPDW methods for high-level fusion to
perform quantitative analysis. (1) Perform Monte-Carlo (MC) sampling approach fifty
times to acquire the calibration and validation sets. (2) Generate the mean results of
each individual technique by running partial least squares (PLS) with five-fold cross
validation fifty times. (3) Combine the individual results to implement high-level fusion
by two proposed MID methods (RMSEPW and RPDW). (4) Obtain the final results of
RMSEPf (RMSEP for the fusion result) generated by the two MID methods.
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for quantitative analysis. The weight of each method is calculated
reasonably and scientifically by the proposed quantitative analysis
methods. On these circumstances, the comprehensive features of each
model are fully taken advantage by the proposed quantitative analysis
methods. Since the original individual models have direct impacts on
the corresponding methods, the results of MID methods are depended
on the effectiveness of the existed models. When one method is
assigned to a high weight, which indicating the corresponding method
is playing a vital role for the fusion approach.

In views of the above, a weighted procedure is applied to fuse each
sensor by the proposedmethodwhich is summarized as follows. Firstly,
the average outputs of eachmethod are obtained through PLS algorithm
after fifty times ofMonte-Carlo (MC) sampling approach [23]. Secondly,
each method is assigned a weight according to its own regression
model. Finally, the ensemble outputs of all the methods are obtained
with eachmethod offering its own contributions to the fusion approach.
Theoretically, the fusion models give better performance than individ-
ual models.

In fusion schemes, the feasibility of the twoMIDmethods are inves-
tigated by two cases study of pesticide data set and chemical data set. In
order to prove the widespread applicability of MID method, different
systems formed with different analytical methods are used to execute
high-level fusion for quantitative analysis. Therefore, the feasibility of
applying MID method to high-level fusion are verified by various tech-
niques, that is, UV–vis, NIR and MIR spectral data of active ingredient
in pesticide, GC–MS and NIR spectral data of n-heptane in chemical
complex. The Performance of RMSEPW method and RPDW method
are evaluated in terms of the predictive ability of the models character-
ized by root mean square error of prediction for fusion (RMSEPf), and
the results were compared with the individual methods as well.

2. Theory and algorithms

2.1. High-level fusion

In order to obtainmore competitive results of high-level data fusion,
the model responses are combined to produce a fused decision with
each individual sensor. In the fusion approach, the results are acquired
by combining the outcome of various methods via their weights. The
outputs can be represented as degrees of support for a sensor through
its own weight in Eq. 1

yp ¼
XL
i¼1

yiwi ð1Þ

where L is the number of sensors,wi is the weight for the ith sensor, yi is
the predict result of the ith sensor, and yp is the fusion result. The output
yp is an ensemble of all individual results and their own weights.

2.2. The framework of modeling indicator determined (MID) method

Theweights are assigned to each sensor according to theMIDmethod.
In this study, twomodel evaluation indexes i.e., rootmean square error of
predictionweighted (RMSEPW)method and ratio performance deviation
weighted (RPDW) method are applied for quantitative analysis. The
flowchart of the high-level fusion for quantitative analysis is represented
in Fig. 1. As shown in the schematization of the fusion framework, the
high-level approach is assembled by different weights via the two MID
methods. Some individual methods are given larger weights whereas
others are assigned to smaller weights, which are relying on the roles it
played. Generally, the larger the weight, the greater contributions it
makes to the fusionmodel.What ismore, the high-level fusion procedure
can be summarized in the following steps (Fig. 2):

According to the principle that the smaller RMSEPf, the better pre-
dictive ability of the model, the one with smaller RMSEPf is regarded
as the optimal MID method. Moreover, it is essential to search an effec-
tiveMIDmethod for each data set. In the following sections, the charac-
teristics and behaviors of the twoMIDmethods are discussed detailedly
by the pesticide and the chemical data sets.

2.3. Modeling indicator determined method

2.3.1. Root mean square of prediction weighted (RMSEPW)
The spectral data are optimized at the stage of calibration set and

then evaluated by RMSEP. In calibration set, the optimal number of la-
tent variables (LVs) is determined by five-fold cross-validation method
with the lowest root mean square error of cross-validation (RMSECV).
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In addition, the performance of themodel is assessed byRMSEPwhich is
mathematically expressed as Eq. 2.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 ŷi−yð Þ
n

s
ð2Þ

where n is the number of samples in the calibration matrix, ŷi and yi are
the predicted andmeasured values, respectively. In RMSEPW approach,
the inverse value of RMSEP is assigned to the weight of the associated
method. In other word, a high RMSEP value results in a small weigh of
the corresponding method for fusion.

2.3.2. Ratio performance deviation weighted (RPDW)
RPD is the ratio of the standard deviation (STD) to RMSECV [24,25].

RPD is an indicator for qualifying the model quality and is calculated by
Eq. 3. As acknowledged, the higher the RPD values, the better the
model's quality is. According to the literature [26], a RPD higher than
1.5 is considered as an acceptable index for initial screenings, a prelim-
inary prediction of 2.0–2.5 indicates a satisfactory model, and a RPD
higher than 3 indicates that the model predicts overwhelmingly effi-
ciency of the model. In RPDW method, the RPD value is in proportion
to the weight of the individual method. As a matter of fact, a high RPD
brings about a large weight of the fusion method.

RPD ¼ SD
RMSECV

ð3Þ

2.4. Partial least-square regression modeling (PLS)

PLS includes a (n × m) spectral matrix X with p predictor variables,
and a (n × p) concentration vector y. The PLS algorithm is based on
the relationship of the signal intensity (X) and the sample characteris-
tics (y) [27]. In prediction process, the predictive result yn is obtained
from Eq. 4, where the Tn (score matrix of the unknown samples) is cal-
culated from Xn, Q is the loading matrix of y. In order to obtain a good
estimate of b, the PLS model needs to be calibrated on samples that
span the variation in Y.

yn ¼ TnbQ ð4Þ

2.5. Model evaluation

In this study, the results of spectral data are optimized at the calibra-
tion stage and then evaluated by root mean squared error of prediction
for fusion (RMSEPf), which is the model evaluation indicators for the
two weighted methods. The models are all established by five-fold
cross validation and the maximum number of LVs is limited to ten.

2.6. Software

The algorithms involved in this study are programmed by Matlab
(Version 2016a, the MathWorks, Inc.). The coding scripts used in this
study are available upon request.

3. Data description

3.1. Pesticide samples

3.1.1. Samples
Eighty deltamethrin samples were prepared with technical delta-

methrin (98.1%, obtained from Jiangsu Huangma Agrochemicals,
China), dimethylbenzene (99.0%, Beijing Chemical Works, China) and
deltamethrin formulation (25 g/L, Bayer Crop Science, China). The
concentration of deltamethrin was ranged from 0.1% to 4.98% (w/w)
with the mean value of 2.55%. The exact concentration of deltamethrin
in the commercial formulation was determined by high performance
liquid chromatography (HPLC).

During the calibration procedure, Monte-Carlo (MC) outlier
approach was carried out by running 1000 times to pick out samples
exhibited the largest minimum distance. It was essential to identify
the outliers and remove them, as they had significant large effect on
the model. After kicking out two outliers, the remaining samples were
divided into calibration set (48 samples), validation set (15 samples)
and test set (15 samples). The test set was sequentially chosen accord-
ing to the concentration from high to low, while the calibration and val-
idation sets were obtained throughMC sampling approach by operating
fifty times. In fact, fifty different calibration and validation sets were ob-
tained by MC approach.

3.1.2. UV–visible (UV–vis) spectroscopy
The UV–vis spectral data were acquired by a spectrophotometer

(Lambda 35, Perkin Elmer, USA) over the range of 350 to 800 nm. A
quartz cuvette with a 1.0 cm path length was employed. The spectral
bandwidth and data point interval were both 1.0 nm, and totally 451
data points for each spectrum.

3.1.3. Near infrared (NIR) spectroscopy
The NIR spectra were measured by an FT-NIR spectrometer

(Spectrum One NTS, Perkin Elmer, USA) and were recorded from 800
to 2500 nm at a resolution of 4 cm−1 with 64 accumulations co-
added. Carbon tetrachloridewas taken as a reference of the background.
The NIR spectra included 2125 data points.

3.1.4. Mid-infrared (MIR) spectroscopy
TheMIR spectraweremeasured by an FT-IR spectrometer (Cary 630,

Agilent, USA) with ATR accessory. The spectra were collected over the
range of 2500 nm to 15,000 nm (resolution of 4 cm−1, 64 scans) and to-
tally generated 869 data points for each spectrum.

3.2. Chemical samples

3.2.1. Samples
Forty samples were prepared with a mixture of butyl acetate

(AR, Beijing Chemical Reagent Company), toluene (AR, Beijing Chemical
Reagent Company), acetophenone (AR, Beijing Chemical Reagent
Company), cyclohexane (AR, Beijing Chemical Reagent Company) and
n-heptane (AR, Beijing Chemical Reagent Company), the concentration
of n-heptane was ranged from 0.01% to 0.38% (w/w) with the mean
value of 0.18%. MC outlier approach was carried out to detect outliers
after 1000 times running. After identifying two outliers, the remaining
samples were divided into calibration set (23 samples), validation set
(7 samples) and test set (8 samples). The test set was obtained sequen-
tially according to the concentration, and the calibration and validation
set were requires by fifty runs of MC sampling approach. Actually, fifty
calibration and validation sets were yield by MC sampling approach.

3.2.2. NIR analysis
The spectral data were acquired by an NIR spectrophotometer

(Spectrum One NTS, Perkin Elmer, USA) over the wavelength range
of 12,000 to 4000 cm−1. The averaged spectra were obtained with a
resolution of 2 cm−1 after scanned 32 times. A quartz cell with a
1.0 mm path length was employed. Carbon tetrachloride solution was
used as the reference.

3.2.3. Gas chromatography-mass spectrometer (GC–MS) analysis
Chromatographic analysis was performed on a Clarus 500 GC–MS

(Perkin Elmer, USA) with HP-5MS column (30 m × 0.25 mm ×
0.25 μm). Initially, the GC oven was set as 60 °C, and it rose to 200 °C
at rate of 5 °C/min gradually. Sample injection volume was 1 μL with
the split ratio of 10:1. Helium (99.999%) was served as the carrier gas
with the flowing rate of 1.0ml/min. In addition, the source temperature
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was kept at 180 °C, and the injector and theMS transfer linewere 250 °C
and 280 °C, respectively. The MS scan range was from 50 to 300 amu.

3.2.4. GC-MS data process
All mass spectral data were stacking together along the time axis.

Afterwards, the three-dimensional spectra were converted into a two-
dimensional chart withm/z as horizontal axis and abundance as vertical
axis by the accumulation algorithms.

4. Result and discussion

4.1. Influence of different parameters for high-level fusion quantitative
analysis

There were two methods to simplify the GC–MS data matrix and
convert the tri-dimensional data cube into a two-dimensional one for
PLS analysis. One method was to sum the time-elution profiles over
the mass dimension, the other was to sum the mass spectra over the
retention time dimension. The former compressed method was to
accumulate the retention time at a fixed m/z. Since a compound owned
its specific m/z, the cumulated peak intensity was linearly associated
with the chemical concentration. It should be noted that, even if
one compound was totally overlapped by others and remaining no
characteristic fragment ion peaks, the cumulated mass spectra was
still satisfied with the principle of linear addition method. Thus, it was
still feasible for quantitative analysis after summing all the retention
time along the mass spectrum dimension. With regard to the other
method of stacking the m/z along the retention time axis, the accumu-
lated peaks were not linearly correlated with the ion concentration,
ascribing to that one chemical produced various ion peaks but the ions
were acquired with different ionization efficiency. As a consequence,
it was failed to execute quantitative analysis. In summary, adding the
retention time up over the mass dimension was applied to the GC–MS
spectra for further analysis.
Fig. 3. The plot of predicted and actual value in test set. (a) individual UV–vis; (b) in
After choosing the accumulation method, the parameters of model
evaluation indicators were needed to be discussed. It was worth noting
that, RMSEP, the prediction error of the test set, was the evaluation
index of the model. As acknowledged, a smaller RMSEP gave a better
predictability, thereby a smaller RMSEP accounted for a larger weight
for the fusion result. It was firmly convinced that RMSEP was inversely
proportional to the weight. Therefore, the reciprocal of RMSEP was
assigned as the weight for each sensor.

As for RPD, itwas an indicator to qualify the ability of the establishing a
model. A higher RPD value conduced to a better modeling capability.
Generally speaking, if the establishment ability of themodelwas satisfied,
the corresponding predictive ability of the test setwould be acceptable. As
a result, the weight of each sensor was in proportion to the RPD value.

RMSEP represented the consistency between the measured value
and the predicted value. What was more, it was applied to evaluate
the accuracy of the model as the error of the developed model. Conse-
quently, RMSEP was generally exploited as the main parameter to eval-
uate the performance of themodel. Accordingly, RMSEPf was employed
to assess the performance of eachweighted index. RMSEPfwas obtained
by each individual method associated with its own weight, i.e., each
sensor accounted for wi for fusion. Besides, the result of RMSEPf was
compared with the individual RMSEP aiming to assess the performance
and effectiveness of different MID methods.

4.2. Pesticide data

The pesticide datamatrix was implemented for the high-level fusion.
Itwas coupledwith the individual approaches of UV–vis, NIR andMIR for
quantitative analysis. In pesticide system, the deltamethrin data set was
pre-processed by center treatment standardization before establishing
individual regression models. As was known, cross validation was an ef-
fective and widely used technique, five-fold cross validation technique
was explored and the individual approaches was performed with the
maximum LVs number of ten. The two MID methods of RMSEPW and
RPDW were carried out for fusion separately.
dividual NIR; (c) individual MIR; (d) RMSEPW for fusion; (e) RPDW for fusion.



Fig. 4. The pie chart of the weight of each individual method. (a) RMSEPW method for
pesticide data set; (b) RPDW method for pesticide data set; (c) RMSEPW method for
chemical data set; (d) RPDW for chemical data set.

Table 1
Results of RMSEPW, RPDW and individual methods on pesticide data set and chemical data set; STD represents the standard deviation in fifty runs; the value of individual RMSEP and
individual RPD are the mean value of fifty runs; the bold font represents the method with better predictive ability.

Data set Methods Fusion RMSEPf (%) Individual RMSEP (%) Individual RPD STD of individual RMSEP (%) STD of individual RPD

RMSEP weighted RPD weighted

Pesticide (deltamethrin) UV-vis 0.0326 0.0335 0.0862 9.5056 0.0118 1.5573
NIR 0.0698 11.8119 0.0226 1.5296
MIR 0.1041 9.8882 0.0107 1.1282

Chemical (n-heptane) NIR 0.0151 0.0161 0.0211 3.1008 0.0065 0.7424
GC–MS 0.0374 2.4729 0.0105 0.4166
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To perform quantitative analysis, the individual model of each
sensor was employed to calculate its ownweight. The individual results
of UV–vis, NIR and MIR were shown in Fig. 3a-c. In detail, the models of
UV–vis andMIRmodels were not as efficient as the NIR model. Namely,
the NIR method played a key rule during RMSEPW fusion approach.
It was explicitly displayed in Table 1 that a smaller RMSEP gave a
larger weight, since the weight of the associated method had an in-
verse relationship with the RMSEP. Fig. 4a was the pie chart of
RMSEPW method, wherein the blue portion represented the weight
of UV–vis, the yellow and green portions revealed the weights of
NIR and MIR. As explained earlier, NIR held a higher contribution
rate (40.33%) on account of a better predictive performance, whereas
UV–vis and MIR account for a little smaller proportion i.e., 32.64% and
27.03% of the fusion approach.

Based on the weights obtained by the RMSEP evaluation criterion,
the high-level fusion was performed for quantitative analysis through
Eq. 1. After RMSEPW fusion, the results of predicted and actual
value in test set were shown in Fig. 3d-e. Moreover, the evaluation
results of different methods on pesticide data set were illustrated
in Table 1. It could be drawn from Table 1 that RMSEPW method
exhibited better predictive results, i.e., RMSEPf 0.0326 % compared
with the individual methods of UV–vis, NIR and MIR, which revealed
that RMSEPW method had improved the stability and predictive
performance on pesticide data set. The overall results indicated
that the predictive ability was enhanced significantly and thus it was
indispensable to perform the weighted strategy on pesticide data set
for fusion.

Depending upon the model developing ability, RPD was utilized as
an indicator to calculate the weight for each individual method. As
seen in Table 1, the three individual models were all well established
with the RPD values larger than 3. Specifically, the RPD of UV–vis
appeared less satisfactory as that obtained from NIR and MIR models.
It was obvious that the weight was linearly associated with the RPD
value of corresponding method. As a result, the UV–vis data occupied
a smaller proportion (30.13%), whereas NIR and MIR accounted for
a larger proportion of 37.45% and 32.42% for high-level fusion, respec-
tively (Fig. 4b). On the basis of the weights gained from the RPD
evaluation criterion, the three individual methods were executed for
high-level fusion approach. As outlined in Table 1, the RPDW method
(RMSEPf 0.0335 %) had achieved a more impressive performance than
individual methods, verifying the obvious advantage of the RPDW
method upon the pesticide data. Furthermore, it was also manifested
that RPDWmethodwas feasible for high-level fusion to execute quanti-
tative analysis.

As the RMSEPW method revealed the predictive result directly, a
higher predictive ability were usually accompanied by RMSEPW
method (Fig. 5a). On the whole, RMSEPW method demonstrated a
better predictive ability than the RPDW method in terms of RMSEPf.
The predictive performance of the five methods followed the order:
RMSEPW N RPDW N NIR N UV–vis N MIR. As a matter of fact, RMSEPW
method and RPDW method performed superior results in comparison
with the individual methods by virtue of taking advantage of each indi-
vidual method.
4.3. Chemical data

The individual approaches of NIR and GC–MS of chemical data
set were implemented for high-level fusion. In chemical system,
the n-heptane data set was pre-processed by center treatment
standardization before establishing individual regression models.
Besides, the maximum number of LVs was set to ten according to
five-fold cross validation technique. After spectral pre-treatment
and modeling parameters well set, the proposed methods of
RMSEPW and RPDWwere executed on the chemical data set for fusion
respectively.

In order to perform the chemical data set of NIR and GC–MS spectra
for fusion, the RMSEP and RPD of each model were obtained at first.
The individual results of NIR and GC–MS were shown in Fig. 6a-b.
As illustrated in Table 1, the individual NIR yielded better results
than individual GC–MS. It had been illustrated that the weight of the
corresponding method was inversely proportional to the RMSEP.
Accordingly, the blue and yellow portion demonstrated the weights of
NIR and GC–MS from the pie chart of Fig. 4c. Obviously, the weight pro-
portion for NIR was 63.87%, whereas GC–MS contributed much smaller
i.e., 36.13%, clarifying the NIR method was comparatively important
than GC–MS method in the RMSEPW method for fusion. The plots of
predicted and actual value in test set after fusion were shown in
Fig. 6c-d. Results of RMSEPWmethod and individualmethods on chem-
ical data were summarized in Table 1. Compared with the individual
methods, RMSEPW method was well predicted on the test set and had



Fig. 5. The RMSEP of individual and fusion methods. (a) RMSEP for pesticide data set; (b) RMSEP for chemical data set.
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improved the predictive performance, revealing that it was essential to
perform the RMSEPWmethod for fusion. Namely, the RMSEPWmethod
was more promising than individual methods.

For the RPDWmethod, RPD was utilized to obtain the weight of the
individual methods. In RPDWmethod, the weight of the corresponding
method was linear dependent on the RPD value.

Fig. 4d was the weight of each individual method for RPDW fusion.
As concluded from Fig. 4d, GC–MS held a slightly smaller proportion
(44.37%), and NIR attributed 55.63% for high-level fusion analysis.
Table 1 listed the results of RPDW method and individual methods on
chemical data set. As displayed in Table 1, the NIR method with higher
RPD than GC–MS method appeared more outstanding than GC–MS
method. In particular, RPDW method achieved more impressive perfor-
mance than individual methods on pesticide data i.e. RMSEPf 0.0161 %,
manifesting the obvious advantage of the RPDW method upon the
chemical data. In addition, it indicated that RPDWmethodwaspracticable
for fusion with smaller RMSEPf compared with the individual methods.

As demonstrated in Fig. 5b, the RMSEPWmethod performed better
than RPDWmethod and individual methods which was predominantly
Fig. 6. The plot of predicted and actual value in test set. (a) individual NIR;
owing to that RMSEP was a parameter straightly indicating the predic-
tive performance. Conclusively, a clear ranking for the four methods
was displayed: RMSEPW N RPDW N NIR N GC–MS. Actually, in contrast
with the performance of the global model, the two weighted methods
performed imperative results bymeans of fusing the individual method
for quantitative analysis.

5. Conclusion

In order to perform the high-level fusion for quantitative analysis,
we proposed two MID methods of RMSEPW and RPDW to proceed
high-level fusion. The weights were calculated by the individual model-
ing indicator for the fusionmodels. A lowRMSEPWf directly revealed the
predictive performance and consequently gave optimal results. Actually,
a better predictive ability was usually coming along with RMSEPW
method, whereas RPDW method was a little worse than RMSEPW
method for not directly reflecting the predicted results. Only when the
original model was acceptable without overfitting and outliers, the out-
come of RPDW method might be comparable with RMSEPW method.
(b) individual GC–MS; (c) RMSEPW for fusion; (d) RPDW for fusion.
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The proposed RMSEPWandRPDWmethodswere successfully applied to
fusionmethods of UV–vis, NIR andMIR spectral data of active ingredient
and GC–MS and NIR spectral data of n-heptane. In a word, the two MID
methods were promising with substantial improvement of predictive
ability compared with individual methods.
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