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Yanmei Xionga and Shungeng Min*a

The competitive adaptive reweighted sampling-successive projections algorithm (CARS-SPA) method was

proposed as a novel variable selection approach to process multivariate calibration. The CARS was first used

to select informative variables, and then SPA to refine the variables with minimum redundant information.

The proposedmethod was applied to near-infrared (NIR) reflectance data of nicotine in tobacco lamina and

NIR transmission data of active ingredient in pesticide formulation. As a result, fewer but more informative

variables were selected by CARS-SPA than by direct CARS. In the system of pesticide formulation, a multiple

linear regression (MLR) model using variables selected by CARS-SPA provided a better prediction than the

full-range partial least-squares (PLS) model, successive projections algorithm (SPA) model and

uninformative variables elimination-successive projections algorithm (UVE-SPA) processed model. The

variable subsets selected by CARS-SPA included the spectral ranges with sufficient chemical information,

whereas the uninformative variables were hardly selected.
Introduction

In recent years, near-infrared (NIR) spectroscopy has gained
wide acceptance in different elds such as agriculture1–4 and the
petrochemical5,6 and pharmaceutical industries7,8 by virtue of its
advantages in recording spectra for solid and liquid samples
without any pretreatment. Generally, NIR spectroscopy is used
in combination with multivariate techniques for qualitative or
quantitative analysis. However, with the existence of uninfor-
mative or irrelevant variables in raw spectra, bad or inefficient
prediction results are usually obtained. To solve this problem,
suitable projection or selection techniques are usually used.9–14

It is nowwidely accepted that awell-performed variable selection
can make models have a better prediction.15 Variable selection
aims at obtaining a subset of spectral information that gives the
smallest possible errors when used to make quantitative deter-
minations or to discriminate between dissimilar samples.

The competitive adaptive reweighted sampling method
(CARS) is a recently proposed variable selectionmethod that has
been proved very efficient when applied to NIR data.16,17 The
successive projections algorithm (SPA), proposed as a variable
selection strategy by M. C. U. Araújo, et al.,18 shows the advan-
tage of acquiring a small representative subset of full-spectrum
variables with minimum collinearity. SPA has been successfully
rsity, Beijing 100193, P.R. China. E-mail:

86 10 62733091; Tel: +86 10 62733091

obacco, Beijing 101121, P.R. China

Chemistry 2014
applied to select variables in NIR spectroscopy,19–22 as well as for
coefficient selection in wavelet regression models.23–25

CARS can select the variables with large coefficients in a
multivariate linear regression model, and employing the vari-
ables selected by CARS formodeling can avoidmodel over-tting
and usually improves its predictive ability. However, partial least
squares (PLS) renement is still required, as too many variables
are still retained aer CARS for simplemultiple linear regression
(MLR). On the other hand, SPA employs simple projection to
select variables with a minimum of collinearity, but variables
selected by SPA may make little contribution to multivariate
calibration, which can affect model prediction. The combina-
tion of the two methods will integrate the bright side of each,
and a similar method that adapts this idea, i.e. the uninforma-
tive variables elimination-successive projections algorithm
(UVE-SPA), had been proposed by Ye et al.26 Nevertheless, CARS
has been provedmore efficient than UVE in variable selection as
many fewer variables were selected and comparative or even
better results could be obtained.16,17 Coupling CARS with SPA
may achieve more satisfactory results than using UVE-SPA.

In this work, successive projection algorithms combined with
the competitive adaptive reweighted sampling (CARS-SPA)
methodwas proposed for spectral variable selection in which SPA
was employed for variable selection aer CARS discarded the
unimportant variables by regression. The proposed method was
applied to two systems of NIR data, namely, the nicotine in
tobacco laminaandtheactive ingredient inpesticide formulation.
The corresponding MLR models were established over the spec-
tral variables selected byCARS-SPA.Moreover, UVE, SPA,UVE-SPA
Analyst
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and CARS were also investigated the same sample sets, and their
performances were compared with the proposed method.

Theory
CARS

The CARS is a strategy for variable selection by selecting the
variables with large absolute coefficients in a multivariate linear
regression model such as PLS. The details of CARS can be found
in ref. 16, and the principles of CARS are summarized as
follows:

(1) The absolute values of regression coefficients of the PLS
model are calculated and used as an index for evaluating the
importance of each variable.

(2) CARS sequentially selects N subsets of wavelengths from
N Monte Carlo sampling runs in an iterative and competitive
manner based on the importance level of each variable. In each
sampling run, a xed ratio of samples is rst randomly selected
to establish a calibration model.

(3) A two-step procedure, including exponentially decreasing
function (EDF)-based enforced wavelength selection and adap-
tive reweighted sampling-based competitive wavelength selec-
tion, is then adopted to select the key variables based on the
regression coefficients.

(4) Finally, cross validation is applied to choose the subset
with the lowest root mean square error of cross validation.

UVE

UVE is a method of variable selection based on stability analysis
of regression coefficients b. The details of UVE can be found in
ref. 13. In the present study, the main steps of UVE are taken as
follows:

(1) First, PLS regression is performed on instrumental
response data Xcal and property values y of calibration set, and
the optimal number of latent variables (LVs) is determined.

(2) Then, a noise matrix with the same size of the Xcal is
generated, and the elements are multiplied with a small
constant to make their impact on the model negligible. The
noise matrix is appended to the original one to form an
extended matrix with twice as many variables as the original.

(3) PLS models are made on the extended matrix and y in
manner of leave-one-out cross validation. This leads to a matrix
of b values with as many rows as samples and one column for
each variable, both original and random.

(4) The c value of each variable is calculated as the average of
the b values of each column divided by the standard deviation of
that column.

(5) The cut-off value is set as the maximum of absolute value
c among the random variables. Every original variable with
equal or lower absolute value of c is assumed to contain nothing
but noise and is eliminated.

SPA

In SPA, the selection of variables is cast in the form of a
combinatorial optimization problem with constraints that are
formed according to a sequence of projection operations.
Analyst
Moreover, the projection operations are used to choose subsets
of variables with little collinearity to minimize redundancy. SPA
is aimed at selecting variables for use in multiple linear
regression (MLR) models. SPA employs simple projection
operations in a vector space to obtain subsets of variables with
small collinearity. The general procedure of SPA18,27 is summa-
rized as follows:

Step 1: before the rst iteration (n¼ 1), let xj ¼ jth column of
Xcal; j ¼ 1, ., J.

Where Xcal is the spectra matrix of calibration set.
Step 2: let S be the set of wavelengths which have not been

selected yet, i.e.,

S ¼ {j such that 1 # j # J and j ; {k (0), ., k (n � 1)}}.

Step 3: calculate the projection of xj on the subspace
orthogonal to xk(n�1) as

Pxj
¼ xj � (xTj xk(n�1))xk(n�1)(x

T
k(n�1)xk(n�1))

�1

for all j ˛ S, where P is the projection operator.
Step 4: let k(n) ¼ arg(maxkPxjk, j ˛ S).
Step 5: let xj ¼ Pxj, j ˛ S.
Step 6: let n ¼ n + 1. If n < N, go back to step 2.
Step 7: the resultant wavelengths are {k(n); n ¼ 0, ., N � 1}.
The optimal number of employed variables is determined by

the performance in the following MLR model.
UVE-SPA and CARS-SPA methods

UVE-SPA andCARS-SPA are both combinationmethods. CARS or
UVE is rstly employed to select the key variables, and then SPA
is used to select variables from the key variables that have
minimum collinearity. In terms of spectral variable selection,
both methods have obvious advantages in two aspects: (1) make
the association of variables and property closer; (2) the variables
that SPA requires is signicantly reduced. In particular, the
advantage of CARS-SPA over UVE-SPA lies mainly in the effi-
ciency differences between CARS and UVE. Because fewer vari-
ables are retained by CARS than by UVE, SPA can work more
efficiently with the reserved information and greatly improve the
modeling efficiency. Furthermore, as CARS selects the variables
with large regression coefficient, whereas UVE eliminates the
variables with low signal to noise ratio (S/N), the discrepancy
between the two techniques would give different variable selec-
tion results. As is well known, MLR cannot handle the original
variables for severe colinearity exists in raw spectral data. Since
UVE-SPA and CARS-SPA not only eliminate the unimportant but
also collinear variables, MLR can process the retained variables
instead of seeking latent variables with PLS. In this study,MLR is
subsequently conducted aer UVE-SPA or CARS-SPA.
Experimental
Reagents

Deltamethrin emulsion (25 g L�1, Bayer Crop Science, China);
original deltamethrin (98.1%, JiangsuHuangmaAgrochemicals,
This journal is © The Royal Society of Chemistry 2014

http://dx.doi.org/10.1039/c4an00837e


Table 1 Evaluation of the reference methods (unit: %)

Number 1 2 3 4 5 6 Mean RSD RSD

Tobacco 1 1.71 1.71 1.69 1.7 1.7 1.71 1.70 0.82 0.73
2 2.48 2.47 2.48 2.47 2.49 2.48 2.48 0.75
3 3.5 3.51 3.49 3.50 3.50 3.50 3.50 0.63

Pesticide 1 1.43 1.43 1.43 1.43 1.42 1.43 1.43 0.52 0.56
2 2.53 2.54 2.53 2.54 2.54 2.54 2.54 0.55
3 4.35 4.36 4.37 4.36 4.36 4.36 4.36 0.63
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China); dimethylbenzene (A.R., Beijing Chemical Works, China)
and carbon tetrachloride (A.R., Beijing ChemicalWorks, China).
All the reagents were stored in the refrigerator at 4� 1 �C before
the experiment.
Reference methods

As the models were established on the data obtained from the
reference methods, the standard error of the reference methods
plays an important role in chemometrics modeling. In this
study, two actual data sets were used to evaluate the proposed
variable selection technique:

(1) Nicotine in tobacco lamina: the concentration of nicotine
in tobacco laminae was measured by continuous ow analysis
method with an external standard method. In this data set, the
nicotine content ranges from 1.06% to 4.37%, and the mean
value is 2.42%.

(2) Deltamethrin concentration in pesticide formulation: the
exact content of the deltamethrin in the formulation was
measured by HPLC with an external standard method. In this
data set, the concentration of deltamethrin ranges from 0.11%
to 5.39% (w/w), and the mean value is 2.80%.

To evaluate the reference methods, three samples of each
data set were measured for six times, and the results are shown
in Table 1.
Diffuse reectance spectra of tobacco samples

NIR diffuse reectance spectra of 500 tobacco lamina samples
were measured using a FT-NIR spectrometer (Spectrum ONE
NTS, PerkinElmer, USA). The spectra were recorded over the
wavenumber range of 10 000–4000 cm�1 at 8 cm�1 resolution.
Each spectrum was the average of 64 scans. For grouping, 400
samples were randomly selected as the modeling set, and the
other 100 samples were used as the prediction set. Among the
modeling set, 250 samples were treated as calibration set by K-
Stone sampling,28 and the other 150 samples were considered as
the validation set.
Transmittance spectra of pesticide formulation samples

Three batches of the commercial deltamethrin formulationwere
used to prepare the samples, and 80 samples were prepared in
total. Among the samples, a prediction set that consisted of 20
samples was prepared independently to evaluate themodel. The
other 60 modeling samples were divided into calibration set (40
samples) and validation set (20 samples) by K-Stone sampling.
This journal is © The Royal Society of Chemistry 2014
Each sample was prepared with certain amount of formulation,
dimethylbenzene and deltamethrin for spectra collection. In
order to avoid collinearity, the three reagents were added
randomly. The gross mass of each sample was around 15 g and
the concentration ranged from 0.11% to 5.39% (w/w). The
transmittance spectra of the prepared pesticide formulation
were recorded by a FT-NIR spectrometer (Spectrum ONE NTS,
PerkinElmer, USA). The spectra were recorded over the wave-
number range of 12 500–4000 cm�1 at 8 cm�1 resolution. Each
spectrum was the average of 64 scans. The cuvette was rinsed
with carbon tetrachloride between the samples.
Simulated data

A dataset, called SIMUIN, is simulated in the way as ref. 13,
which contains exactly ve latent variables. The yielded relative
eigenvalues by principal component analysis on the centered
data are (%) 23.40, 20.94, 19.26, 18.57 and 17.83. SIMUIN
consists of 80 samples in rows and 200 wavelengths in columns.
The rst 100 wavelengths are linearly related with y, whereas the
last 100 columns contain random numbers from 0 to 1, repre-
senting uninformative wavelengths. The added noises are nor-
mally distributed in the range 0 to 0.005. Simulated data was
randomly grouped into a modeling set (60 samples) and a
prediction set (20 samples). Among the modeling set, 40
samples were set as calibration and the other 20 samples as
validated by K-Stone sampling.
Soware and scripts

The spectra les were imported into Matlab (v7.11, MathWorks,
USA) for data analysis. The scripts used in this study are based
on ref. 13, 18 and 26. The CARS scripts are available at http://
www.code.google.com/p/carspls/, and the other scripts are
also available upon request.
Modeling strategy

First, from all the samples, a modeling set was randomly
selected and the remainder was used as a prediction set (for
prepared pesticide samples, the modeling set and prediction set
were prepared separately). Among the modeling set, samples of
calibration set were selected by K-stone sampling and the
remaining samples were taken as a validation set to test the
performance of the model. As is well known, cross validation is
an effective and widely used technique for modeling and vari-
able selection. Thus, in this study, the models were all
Analyst
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established over a 10-fold cross validation technique. Parame-
ters of algorithms were optimized according to the root mean
square error of cross-validation (RMSECV) generated from the
calibration. Aer optimization of the preliminary modeling, a
validation set was used to validate its performance (root mean
square error of validation, RMSEV). Lastly, the model was
evaluated by an independent sample sets to testify its prediction
ability, i.e., root mean error square error of prediction (RMSEP).

Results and discussion
Inuence of number of Monte Carlo sampling runs

To investigate the inuence of the number of Monte Carlo
sampling runs on the performance of CARS, the following four
cases were taken into consideration in which the number of
sampling runs was individually set as 50, 100, 200 and 500
times. In each case for the three datasets, 50 replicates of CARS
running were executed, and simultaneously, RMSECV values
were recorded. Results of statistical box-plots are shown in
Fig. 1. There is no obvious evidence that the number of Monte
Carlo sampling runs has any signicant inuence on the
performance of CARS. Therefore, the number of Monte Carlo
sampling runs was set 100 times in this study.

Investigation of the simulated data

The data matrix SIMUIN was implemented to evaluate the effi-
ciency of the proposed CARS-SPAmethod. It was compared with
the other three approaches as UVE, CARS and UVE-SPA, aiming
Fig. 1 Box-plots for each dataset with the number of Monte Carlo samp
Tobacco nicotine data. (c) Pesticide formulation data.

Analyst
to ascertain that CARS-SPA is indeed a characteristic and
alternative procedure for variable selection, but not to decide
which method is observably the best.

This data was rst auto-scaled at each variable to obtain zero
mean and unit variance before modeling. The number of vari-
ables N selected by SPA was determined by RMSECV of corre-
sponding MLR model. Results are illustrated in Fig. 2a. The
optimal number of variables to be employed in SPA, UVE-SPA
and CARS-SPA was 5 in each case. Performance of the models
using different variable selection methods is listed in Table 2.
Results between two full-variables PLS models clearly show that
the uninformative variables have a great impact on the model
efficiency. It is worth noting that, by using UVE and CARS, the
uninformative variables were well managed; thus, the models'
performance was equally comparable with the PLS model with
only informative variables. Compared with UVE and CARS,
which selected few variables and gave good RMSEP, SPA
employed the same variable number, but the introduction of
two uninformative variables led to poor competence. This
indicated that SPA cannot deal with the uninformative variables
efficiently. Interestingly, results of CARS-SPA and UVE-SPA were
acceptable, but their results were both inferior to single CARS
and UVE. The explanation can be that the rst 100 variables
were all informative; i.e. the fewer variables employed, the less
chemical information was collected to build the regression.
Therefore, the modeling performance descended along with the
employed variables decreasing (PLS > UVE $ CARS > CARS-SPA
z UVE-SPA). It should be noted that the retained variables
ling runs of CARS set at 50, 100, 200 and 500. (a) Simulated dataset. (b)

This journal is © The Royal Society of Chemistry 2014
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Fig. 2 Variable number versus RMSECV of different SPA models:
simulated data (a), tobacco nicotine data (b), pesticide formulation
data (c).

Table 2 Results of different algorithms in modeling of simulated data

Methods PLS factors Variables RMSECV RMSEV RMSEP

PLSa 6 200(100)c 0.0926 2.5181 2.6336
PLSb 4 100(0) 0.0090 0.0092 0.0115
UVE-PLS 4 65(0) 0.0097 0.0109 0.0123
CARS-PLS 4 21(0) 0.0118 0.0127 0.0141
SPA-MLR — 5(2) 0.3230 0.4498 0.3552
UVE-SPA-MLR — 5(0) 0.0310 0.0360 0.0332
CARS-SPA-MLR — 5(0) 0.0261 0.0296 0.0349

a Results using full spectrum with 200 variables by PLS. b Results using
only the 100 simulated informative variables by PLS. c Number in the
bracket denotes the number of uninformative variables used in the
model.

Fig. 3 Variable selection frequencies of UVE (a), UVE-SPA (b), CARS (c)
and CARS-SPA (d) in 100 calculations of the simulated data.
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varied in different calculations. To obtain comprehensive
observation of selection, all modeling calculations of each
algorithm were repeated 100 times. Fig. 3 plots the variable
frequencies in 100 calculations of UVE, CARS, UVE-SPA and
CARS-SPA, respectively. As is shown, these four techniques can
all eliminate the uninformative variables (latter 100 variables).
Since UVE eliminates only a few informative variables (former
100 variables), the frequency varies highly in different selec-
tions. CARS behaved similarly to UVE, except that the selection
frequency differs at some variables. Fig. 3b and d show that the
frequency of UVE-SPA intensively distributes on several specic
variables, while CARS-SPA moderately reduced the frequency of
the variables selected by CARS, simultaneously ensuring the
probability of selection distributes more widely. Theoretically,
every variable in the rst 100 variables of this system is infor-
mative as they are all contributing to the regression. In this
sense, the selections of CARS and CARS-SPA are more
reasonable.
This journal is © The Royal Society of Chemistry 2014
Analysis of nicotine in tobacco lamina

The original NIR spectra of tobacco lamina are presented in
Fig. 4a. First derivative, a widely used spectral-preprocessing
method, can remove most of the inuence of baseline variation.
As the dri of baseline of the spectra always had a great impact
on the model performance in solid samples, the rst derivative
spectra with 9 points smoothing by a Savitzky–Golay lter with a
second-order polynomial were used. The number of variables N
to be selected by SPA was determined by the RMSECV of the
MLR model and the results are illustrated in Fig. 2b. As shown
in Fig. 2b, the optimal variables to be employed should be 13, 15
and 14 for SPA, UVE-SPA and CARS-SPA, respectively. The
performance of the PLS and MLR models with optimal param-
eters are listed in Table 3.

As shown in Table 3, UVE and CARS gave a slightly better
result than the full-spectrum PLS model. In total, 257 variables
were retained by UVE, whereas 52 variables were selected by
CARS. Although the two models obtained comparable results,
fewer PLS factors were used in the CARS-PLSmodel, as only one-
h of the variables were employed than the fraction in the
UVE-PLS model. Both UVE-SPA and CARS-SPA achieved perfor-
mance comparable to that of UVE and CARS with fewer vari-
ables as SPA removes the colinearity between the original
variables. However, it should be noted that the least variables
used in the SPA-MLR model had no direct relation to a robust
prediction (or to a satisfactory result). This is because SPA
cannot completely avoid selecting uninformative variables,
which have been investigated in simulated data (shown in Table
2). Fig. 5 shows the variables selected by SPA, UVE-SPA and
CARS-SPA. The three algorithms all retained the variables in the
absorption peaks (derivative spectra) that were located in the
range of 4000–5200 cm�1 (the rst combination of stretching
Analyst
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Fig. 4 Original spectra (a), derivative spectra of the tobacco samples
(b) and variable selection frequencies of UVE (c), UVE-SPA (d), CARS (e)
and CARS-SPA (f) in 100 calculations.

Fig. 5 Selected variables by SPA with raw spectra (a) and derivative
spectra (b), UVE-SPA with raw spectra (c) and derivative spectra (d),
CARS-SPA with raw spectra (e) and derivative spectra (f) in analysis of
nicotine in tobacco.
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vibration of X–H and second overtone of C]O).29 The difference
among the three procedures was that SPA and UVE-SPA tended
to select more less-informative variables (annotated with
arrows, e.g., variables in 5050 cm�1 for SPA and those in 5700
cm�1 for UVE-SPA), whereas CARS-SPA ignored most of them.
On the other hand, as the retained variables varied in different
calculations; thus, further research should be performed with
the two algorithms. Therefore, the overview of the selected
variables by different calculations was performed. In Fig. 4c–f,
the variable frequencies in 100 calculations of UVE, CARS, UVE-
SPA and CARS-SPA are presented, respectively. The selection
frequency of a variable indicated in some respects the
Table 3 Results of different algorithms in determination of nicotine in t

Methods PLS factors Variables

PLS 8 1555
UVE-PLS 7 257
CARS-PLS 6 52
SPA-MLR — 13
UVE-SPA-MLR — 15
CARS-SPA-MLR — 14

Analyst
importance of the variable in the calibration. Obviously, there
was a considerable difference between UVE and CARS (Fig. 4c
and e). UVE selected almost all variables with same high
frequency, whereas the variables selected by CARS posed a more
selective and more dispersive distribution of variable selection
frequency. As is shown in Fig. 4d and f, variables in the range
from 4000 cm�1 to 5200 cm�1 (the rst combination of
stretching vibration of X–H and second overtone of C]O29)
were both accepted by UVE-SPA and CARS-SPA in the calibration
because of their high spectral absorption (contain much infor-
mation or variation). However, the variables in 5700 cm�1 (with
a weaker signal, e.g., less informative) were also included in the
UVE-SPA calculation. The explanation can be that the coordi-
nation of baseline variables is required in UVE calculation (to
obtain the criterion of elimination). In contrast, CARS-SPA
employed the variables in the range of 6000 cm�1 (rst overtone
of C–H29) and 7000 cm�1 (the second combination of stretching
obacco lamina

RMSECV RMSEV RMSEP

0.1185 0.1288 0.1291
0.1197 0.1263 0.1259
0.1195 0.1261 0.1247
0.1298 0.1263 0.1293
0.1201 0.1194 0.1218
0.1192 0.1193 0.1204

This journal is © The Royal Society of Chemistry 2014
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Fig. 6 Original spectra of the pesticide formulation samples (a) and
the variable selection frequencies of UVE (b), UVE-SPA (c), CARS (d)
and CARS-SPA (e) in 100 calculations.
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vibration of C–H and rst overtone of O–H29), which had more
chemical information instead of those baseline variables.
Furthermore, the frequency of CARS-SPA was more dispersive
than that of CARS, indicating that the variables were equally
important in the calibration. Moreover, the variables in the
absorption peak of the derivative spectrum (4000–5200 cm�1,
6000 cm�1 and 7000 cm�1) were still possibly employed in the
modeling. The variables in the range from 9000 cm�1 to 10 000
cm�1 (with little information) that were selected by CARS were
completely removed by CARS-SPA. In addition, it should be
noted that the variables selected by CARS were almost a subset
of those by UVE, but more less-informative variables were
reserved by UVE. Nevertheless, the retained variables may differ
aer SPA calculation. In CARS-SPA, few uninformative variables
were introduced to the following SPA procedure; therefore, SPA
Table 4 Results of different algorithms in determination of active ingred

Methods PLS factors Variables

PLS 6 4251
UVE-PLS 6 1178
CARS-PLS 4 38
SPA-MLR — 8
UVE-SPA-MLR — 9
CARS-SPA-MLR — 5

This journal is © The Royal Society of Chemistry 2014
can perform its search with less interference. Informative vari-
ables that made a connotative contribution to the regression
were nally retained. However, case of UVE-SPA was different:
many uninformative variables employed in the SPA calculation
led to the entombment of the competitive but connotative
variables to the regression.
Analysis of active ingredient in pesticide formulation

The obtained spectra of the prepared samples are shown in
Fig. 6a. More sophisticatedmodels using spectral pretreatments
including derivative, smoothing and normalization, among
others, were also attempted. However, they made no signicant
difference or they were even worse than the non-preprocessed
model; therefore, no pretreatments were used in this analysis.
The number of variablesN to be selected by SPA was determined
by the RMSECV of the MLR model and the results are presented
in Fig. 2c. According to Fig. 2c, the optimal number of variable
employed in the following MLR models should be 8, 9 and 5 for
SPA, UVE-SPA and CARS-SPA, respectively. Table 4 outlines the
results of PLS and MLRmodels. As shown in Table 4, unlike the
tobacco system, CARS outperformed UVE, although both of
them obtained a better result than the full-spectrum PLSmodel.
Variables retained by UVE were thirty times of those selected by
CARS. Unlike tobacco, which consists of thousands of chem-
icals, the pesticide formulation is a simple system composed of
several components. In the simple system, full spectral data
seems surplus for preprocessing, and usually brings in bad
results when irrelevant information interferes. Therefore, much
better results will be obtainedwhen variable selection is used for
fewer but essential variables. It should be noted that both UVE-
SPA and CARS-SPA achieved more impressive performances
than direct UVE and CARS, indicating the obvious advantage of
the variable selection technique in the simple system. Further-
more, the CARS-SPA model selected only ve variables, which
was only the half of those selected by UVE-SPA and SPA. Fig. 7
shows the variables selected by SPA, UVE-SPA and CARS-SPA
from the spectrum of deltamethrin (dissolved in carbon tetra-
chloride). As designatedwith arrows in Fig. 7, the variables in the
range of 6500–12 500 cm�1, which had little chemical informa-
tion related to the deltamethrin, were completely discarded by
CARS-SPA, but SPA and UVE-SPA still employed some of them.
This further demonstrated that SPA and UVE-SPA cannot avoid
choosing those uninformative variables that were used by UVE.
All these three algorithms selected the variables in the two main
absorptions of deltamethrin: 4000–5000 cm�1 (the rst
ient in formulations

RMSECV RMSEV RMSEP

0.1250 0.1320 0.1335
0.0846 0.0883 0.0907
0.0425 0.0489 0.0494
0.0823 0.0584 0.0661
0.0439 0.0396 0.0432
0.0327 0.0300 0.0330

Analyst
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Fig. 7 Selected variables by SPA (a), UVE-SPA (b) and CARS-SPA (c) in
analysis of deltamethrin in pesticide formulation.
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combination of stretching vibration of C–H) and 5700–6000
cm�1 (the rst overtone of C–H). Fig. 6b–e plot the spectra of the
samples and the variable frequency in 100 calculations of UVE,
CARS, UVE-SPA and CARS-SPA, respectively. In the analysis of
deltamethrin, the variables selected by UVE were almost those
with high frequency, whereas CARS selected fewer variables, and
the selected frequencies of each variable were also more
dispersive. As shown in Fig. 6c, the selection frequency of UVE-
SPAwasmuchmore concentrated on several variables compared
to that in the analysis of nicotine. In contrast, the selection
frequency of CARS and CARS-SPA were much more dispersive
than that in tobacco system. In CARS-SPA (Fig. 6e), the variables
that were highly related to the deltamethrin absorption (4000–
4800 cm�1 and 5700–6000 cm�1) were reserved. However, UVE-
SPA (Fig. 6c) still employed some ‘baseline’ variables in addition
to the characteristic absorption. Moreover, the frequency of
CARS-SPA was also more dispersive (both in selection range and
frequency) than that of UVE-SPA, which again demonstrated
that, compared with UVE-SPA, CARS-SPA can select the variable
subsets not only with chemical information of the analyte but
can also exclude the uninformative ones. Intuitively, variables
located in absorption peak can possibly be employed, but vari-
ables located in the non-absorption waveband are usually
discarded.
Analyst
Conclusion

A new method designated as CARS-SPA was proposed for vari-
able selection by combining SPA with CARS. Prior to SPA, which
selected variables for multivariate calibration, CARS was per-
formed to select the key variables with large regression coeffi-
cient, which made little contribution to calibration. The
investigation of the simulated data indicated that the proposed
method can avoid selecting the uninformative variables in
modeling. Moreover, compared with the similar method UVE-
SPA, CARS was more selective than UVE, fewer variables were
employed and the search range of variables by SPA was further
narrowed, making variable selection more efficient. The
proposed method was successfully applied to NIR spectroscopic
analysis of nicotine in tobacco lamina and the active ingredient
in pesticide formulation for variable selection. As shown in the
results, SPA or UVE-SPA cannot avoid selecting the uninfor-
mative variables, whereas CARS-SPA tends to retain the vari-
ables with certain chemical information in each absorption
peak without involving the uninformative ones. Although CARS-
SPA did not impress us with a considerably better result than
UVE-SPA in a complex system such as tobacco, it still proved to
be an effective and alternative technique for variable selection.
The variables selected by CARS-SPA covered the full spectral
range, and the uninformative variables are barely selected. This
indicated that CARS-SPA can rene important variables that
make positive contributions to the regression.
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11 S. Osborne, R. Künnemeyer and R. Jordan, Analyst, 1997,

122, 1531–1537.
This journal is © The Royal Society of Chemistry 2014

http://dx.doi.org/10.1039/c4an00837e


Paper Analyst

Pu
bl

is
he

d 
on

 0
1 

Ju
ly

 2
01

4.
 D

ow
nl

oa
de

d 
by

 T
si

ng
hu

a 
U

ni
ve

rs
ity

 o
n 

03
/0

8/
20

14
 0

4:
35

:1
9.

 
View Article Online
12 K. Hasegawa, Y. Miyashita and K. Funatsu, J. Chem. Inf.
Comput. Sci., 1997, 37, 306–310.

13 V. Centner, D. Massart, O. de Noord, S. de Jong,
B. Vandeginste and C. Sterna, Anal. Chem., 1996, 68, 3851–
3858.

14 S. Sæbø, T. Almøy, J. Aarøe and A. H. Aastveit, J. Chemom.,
2007, 20, 54–62.

15 H. Namkung, Y. Lee and H. Chung, Anal. Chim. Acta, 2008,
606, 50–56.

16 H. Li, Y. Liang, Q. Xu and D. Cao, Anal. Chim. Acta, 2009, 648,
77–84.

17 W. Fan, Y. Shan, G. Li, H. Lv, H. Li and Y. Liang, Food Anal.
Methods, 2012, 5, 585–590.
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