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In this study, we proposed a new computational method stabilized bootstrapping soft shrinkage approach
(SBOSS) for variable selection based on bootstrapping soft shrinkage approach (BOSS) which can enhance the
analysis of chemical interest from the massive variables among the overlapped absorption bands. In SBOSS, var-
iable is selected by the index of stability of regression coefficients insteadof regression coefficients absolute value.
In each loop, a weighted bootstrap sampling (WBS) is applied to generate sub-models, according to the weights
update by conducting model population analysis (MPA) on the stability of regression coefficients (RC) of these
sub-models. Finally, the subsetwith the lowest RMSECV is chosen to be the optimal variable set. The performance
of the SBOSS was evaluated by one simulated dataset and three NIR datasets. The results show that SBOSS can
select the fewer variables and supply the least RMSEP and latent variable number of the PLS model with the
best stability comparing with methods of Monte Carlo uninformative variables elimination (MCUVE), genetic al-
gorithm (GA), competitive reweighted sampling (CARS), stability of competitive adaptive reweighted sampling
(SCARS) and BOSS.
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1. Introduction

During the last fewdecades, variable selection, regarded as a statistic
tool which plays an essential place in quantitative analysis of near infra-
red (NIR),mid infrared (MIR) and Raman spectroscopy, aims to give the
minimum prediction errors of establishedmodels, meanwhile, the rela-
tions between variables and the properties of samples can be illumi-
nated according to it [1].

In NIR, absorption bands of fundamental frequency vibrations and
combination of vibrations make it possible for quantitative analysis.
However, adverse issues are also inevitable, as absorption bands are
usually overlapping. Therefore, suitable chemometrics algorithm is nec-
essary to deal with NIR spectrum, with the purpose to eliminate the un-
informative variables effectively by using variable selections.

Partial least squares regression (PLS) can process large numbers of
noisy and unrelated variables, which has been commonly used in mul-
tivariate regression analysis. Meanwhile, the issue that elimination of
uninformative variables can improve the performance of PLS models
has been demonstrated with theoretical [2–5] and experimental evi-
dences [6–13]. Recently, researchers began to employ different variable
nsg@cau.edu.cn (S. Min).
selection methods to assess their performance [12,14–22]. The results
have shown that variable selection has great improvement in accuracy
and robustness in quantitative model, and the relationship between
variables and chemical information can be solidified more satisfactory
[21].

A family ofmethods of variable selection grounded on PLS regression
have been developed successfully [23]. Some of them focus on selecting
combination of single variables with good performance, such as unin-
formative variables elimination (UVE) [2], variable importance projec-
tion (VIP) [24] etc., another of which are mostly based on model
population analysis (MPA) [25], such as iteratively retains informative
variables (IRIV) [26], variable iterative space shrinkage approach
(VISSA) [22], variable combination population analysis (VCPA) [27],
bootstrapping soft shrinkage approach (BOSS) [28] and margin influ-
ence analysis (MIA) [26]. Also, some of which consider statistical fea-
tures of the variables, e.g. successive projection algorithm (SPA) [29],
random frog [19], competitive reweighted sampling(CARS) [1], stability
of competitive adaptive reweighted sampling (SCARS) [21] and Bayes-
ian linear regression (BLR) [30], while others aim at seeking the best
combination on spectral intervals, e.g. moving windows partial least
square (MWPLS) [31], interval partial least square (iPLS) [32] and inter-
val random frog (iRF) [33].

Recently, a new variable selectionmethod named bootstrapping soft
shrinkage approach (BOSS) has been developed by Deng et al. in 2016
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[19]. The core parts of BOSS are weighted bootstrap sampling (WBS)
and MPA. The absolute value of RC is criterion of variables.

This method has shown significant improvement of prediction abil-
ity compared with other high performing selection methods such as
Monte Carlo uninformative variable elimination (MCUVE) [2], compet-
itive adaptive reweighted sampling (CARS) [1] and genetic algorithm
PLS (GA-PLS) [28], but the model credibility of BOSS was still in need
of further improving. In our research, stability of RC should be taken
into account as an index, such as MCUVE and SCARS. Therefore, we
tried to modify BOSS with new index as the stability of RC because RC
are diverse in different models. In all existingmethods, loadingweights,
RC and variable importance in projection are common filter measures
for the variable importance. By introducing this criterion, both the
model accuracy and credibility were enhanced, also, the problem of
over-fitting was fixed.

In practice, SBOSS confirmed the significance of each variable and
then found out the optimal combination of variables. To evaluate
SBOSS, we applied this data-driven approach on one simulated dataset
and three NIR datasets, and for comparison, five variable methods,
such as GA, MCUVE, CARS, SCARS and BOSS, were involved in.

In following parts, it would be demonstrated how the stability of RC
was used as an index to extract the optimal variable combination, how
this filter improved the accuracy and stability apparently in calibration
modeling, how the selected variables corresponded to the chemical in-
formation with uncorrelated contents, and how the over-fitting in PLS
model was avoided by the combination of MPA, CV and stability of RC.

2. Theory and Algorithm

2.1. Stability of RC

The stability of a variable was used to optimize BOSS. In PLS, spectral
data matrix X contains p variables in columns and n samples in rows.
Vector y with order n × 1 denotes the measured property of interest.
The equation of relationship of X and y is below:

y ¼ Xβ þ Ε ð1Þ

The β includes p RC, E was error vector. After N sampling runs, a ma-
trix B ([β1, β2,…βN]) containing N corresponding regression coefficient
vectors can be obtained. The stability should be defined as:

ck ¼ bk=s bkð Þ
��� ��� ð2Þ

The ck is the stability of kth variable in N sampling runs. bk is the av-
erage value, s(bk) is the standard deviation of kth variable in N sampling
runs. ck can indicate the importance of kth variable and its high ability in
modeling.

2.2. Bootstrap Sampling (BSS) and Weighted Bootstrap Sampling (WBS)

BSS is a statistical technique for random samplingwith replacement.
All the objects have the same possibility to be selected in each test. Dif-
ferent with BSS, WBS hires different weights for objects. In SBOSS, both
BSS and WBS are used. More details refer to related articles [28].

2.3. The Element of MPA (Model Population Analysis)

MPA could be considered as a general framework for developing
new methods by statistically analyzing some interesting parameters
(RC, prediction errors, etc.) of a number of sub-models. The generation
of large population models is based on the sampling method. Monte
Carlo sampling (MCS) is often used in the sample space and variable
space. The procedure of MPA is below:
(1) Generate a sub dataset by MCS, bootstrap sampling and binary
matrix sampling are both used as to draw datasets in the context of
MPA. (2) Establishing a sub-model for each sub-dataset. (3) Analyze
the outputs of all the sub-models to extract some information, this is
the most important point of MPA.

RMSECV of 5-fold cross validation is regarded as the assessment of
the model. The ratio of best models is defined as σ, the best sub-
models with the best σ have the lowest RMSECV.

2.4. The Stabilized Bootstrapping Soft Shrinkage (SBOSS) Method

With the N sampling runs, SBOSS will recurrently select N subsets.
Briefly, SBOSS operate in four steps in each sampling run: (1) BSS is
used to generate subsets. (2) PLS sub-models are built and find the
best models with MPA. (3) New weights for variables are obtained.
(4) Due to the new weights, WBS is applied to produce new subsets.

The same with BOSS, the calculation of SBOSS also has many loops.
WBS and MPA are applied remain informative variables. The details
can be found in reference [28].

After BSS sampling, the variables were indexed by the stability of
variables. PLS sub-models are built. RC are calculated for each extracted
model. Change all the elements in regression vector to absolute value
and normalize each regression vector to have unit length. Sum up the
normalized regression vector to obtain new weights for variables. Sum
up the normalized stability regression vector to generate new weights
for variables.

wi ¼
XK
k¼1

ci;k ð3Þ

K is the number of sub-models, ci, k is the absolute value of normal-
ized stability of regression coefficient for variable i in the kth sub-
models.

After that, new subsets are created by WBS with new weights. And
all the loops except BSS sampling are repeated until the number of var-
iables in the new subsets equals to 1. In the end, the subset with the
lowest RMSECV is chosen to be the optimal variable set. The flowchart
is demonstrated in Fig. 1.

2.5. A Brief Introduction of the Compared Methods

2.5.1. MCUVE
The linear calibration model is expressed in the following:

c j ¼
β j

s β j
� � j ¼ 1;2; ::…p ð4Þ

where β is the regression coefficient vector, X represents observation
matrix, y the response vector, e symbolizes the random error vector
and E (e) and Cov (σ) denote the expectation and covariance,
respectively.

The UVE-PLS procedure is based on analyzing the β RC in Eq. (4), in
which the original variables is added by an equal number of random
variables with very small range (about 10−10). The stability criterion c
is defined by

c j ¼
β j

s β j
� � j ¼ 1;2; ::…p ð5Þ

s β j
� � ¼ ∑

n

i¼1

βij−β j
� �2

n−1

 !1=2

ð6Þ

where cj is utilized on the conjunction of the addition of random vari-
ables and the original data, βj stands for the RC of the jth wavelength
variable when leaving out the ith calibration sample, and n is the



Fig. 1. The flowchart of SBOSS.
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number of calibration samples. βj and s(βj) denote respectively the
mean and the standard deviation of all βij for the jth wavelength vari-
able, and βij is achieved by the leave-one-out method.

The threshold of the elimination of uninformative variables is ob-
tained by the following equation:

c j
� ��� ��b max cartif

� ��� �� ð7Þ

where (cj) is the stability criterion for the jth wavelength in the original
data; and |max(cartif)| is the absolute value of the maximum value for
(cj) from the added random variables. The modification of UVE, which
gave an objective cut-off level for the stability criterion c in the form
of jack-knife estimated standard error, has been proposed to enhance
the interpretability of the results [34].

In the MCUVE, Monte Carlo strategy is introduced to UVE instead of
leave-one-out strategy: random choosing M samples from all the cali-
bration samples to build PLS models for calculating the regression coef-
ficient β, then repeating the procedure for N times. So Eq. (6) becomes
the following:

s β j
� � ¼ ∑

N

i¼1

βij−β j
� �2

N−1

 !1=2

ð8Þ

Here, βij symbolizes the regression coefficient of the jth wavelength
in PLS model, which is built by the ith M random chosen samples. In
practice, by means of Monte Carlo method the amount of computation
complexity can be reduced substantially.

2.5.2. GA-PLS
GA was proposed by Lucasius and Kateman according to the

‘Darwin's classical rules’ [35], which is mainly ruled by the ‘struggle of
life’.

(1) Define the parameters of the GA-PLS:The parameters of GA-PLS
in this paper are listed in Table 1 (Supplementary material).

(2) Initiation of population: each chromosome in the population is
row vector containing as many genes as there are variables, each
gene being coded as 1 if the corresponding variable was selected
and 0 if not. The structure of each chromosome is determined in
a totally random way. Of note, each chromosome would be
checked to avoid having the same structure in the population.

(3) Evaluation of the response: based on the variables selected by each
chromosome, a number of subset data could be extracted from the
full data. The larger the value of the cross-validated explained var-
iance, the better the chromosome.

(4) Crossover and mutation: in order to generate two new chromo-
somes of the existing population is randomly selected to carry
out crossover and mutation approach as well as to evaluate the
cross-validated explained variance of the new offspring. At this
step, two new chromosomes should be also checked to avoid con-
taining the same variables.
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(5) Update the population by comparing the CVEV of the two new
chromosomes with the one of the existing chromosomes of the
current population. The updating rule is that each chromosome
of the new offspring would survive if it is better than the worst
chromosome which would be discarded late.

(6) Go back to Step (4) when the amount of the evaluations does not
satisfy the criterion of the entrance of backward selection.When it
is satisfied, backward selection is conducted to choose the best
subset of the population.

(7) If the criterion of the final termination is reached, thewhole evolu-
tion process of GA has ended. If not, go back to Step (4). As we can
see the parameters from the Table 1 (Supplementary material),
the amount of evaluations is set to 200. Thus, only if the evalua-
tions reach 200, the GA run is terminated.

(8) After processing the predefined runs, the selection frequency of
each variable could be obtained. Rank the variables by the selec-
tion frequencies, and then choose the optimal subset with the
maximum CVEV according to the ranking of variables.

2.5.3. CARS
CARS is based on absolute RC to evaluate the importance of variables.

Monte Carlo is employed for sampling. The exponentially decreasing
function (EDF) is then employed to enforce feature selection, removing
variables with small absolute RC by force. In the ith sampling run, the
ratio of wavelengths to be kept is computed using an EDF defined as:

ri ¼ ae−ki ð9Þ

where a and k are two constants determined by the following two con-
ditions: (I) int the first sampling run, all the p wavelength are taken for
modeling which means that r1 = 1, (II) in the Nth sampling run, only
two wavelengths are reserved such that we have rN = 2/p. With the
two conditions, a and k can be calculated as:

a ¼ p=2ð Þ1= N−1ð Þ ð10Þ

k ¼ ln p=2ð Þ= N−1ð Þ ð11Þ

where ln denotes the natural logarithm.
Consecutively, adaptive reweighted sampling (ARS) is performed to

realize a competitive feature selection based on the RC. This stepmimics
the ‘survival of the fittest’ principle which is the basis of Darwin's Evolu-
tion Theory.

Finally, cross validation is adopted to select the subsets according to
the lowest RMSECV.

Both CARS and BOSS are ground on large absolute RC to evaluate the
importance of each variable. The variables with larger absolute RC have
great opportunities to be selected. In CARS, Monte Carlo strategy is
adopted for sampling. The exponentially decreasing function (EDF) is
then employed to enforce feature selection, and small absolute RC are
removed. Continuously, adaptive reweighted sampling (ARS) is applied
to select the key variables [36]. Eventually, the subsetwill be selected by
cross validation with the lowest RMSECV.

SCARS is a method based on CARS, a more informative criterion, i.e.
the variable stability was employed to select important variables. The
definition of stability is the absolute value of regression coefficient di-
vided by its standard deviation.

BOSS is a newly proposed method. The only difference between
BOSS and SBOSS is that BOSS still considers the regression coefficient.
The procedure of BOSS has been demonstrated in previous research
[28].
2.6. Model Validation

Centering (pre-processing method) was applied in all the datasets,
to evaluate the performance of four promising variable selection
methods, namely CARS, SCARS, BOSS and SBOSS. Mean-centered were
applied before modeling, and the optimal number of latent variables
was determined by 5-fold cross validation. The root-mean-square
error of calibration (RMSEC), root-mean-square error of the prediction
of test set (RMSEP), Qcv

2 and Q2
test were used to assess model perfor-

mance. Moreover, the number of optimal latent variables (nLVs) and
the number of variables selected (nVAR) were also recorded.

RMSEC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑Ncal

i¼1 yi− yi
∧

� �2

=Ncal

s
ð12Þ

Q2
cv ¼ 1−∑Ncal

i¼1 yi− yi
∧

� �2

=∑Ncal
i¼1 yi−�yið Þ2 ð13Þ

While yi is the experimental of the predicted properties, and yi
∧ and

�yi represent predicted and average respectively. Ncal is the number of
calibration samples of the training set. RMSEP and Q2

test hold the equa-
tion following the same as RMSEC and Qcv

2.

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Xi−�X
� �2

= n−1ð Þ
vuut ð14Þ

Eachmethodwas repeated 50 times to assess the stability and repro-
ducibility. The standard derivation (SD) was employed to calculate sta-
bility with Eq. (14). Where Xi and �X are predicted and average value,
separately. n is the number of all samples. The smaller the value of the
stability, the more stable is the method.

3. Experimental Section

3.1. Simulated Dataset [2]

SIMUIN data consists of 50 samples in rows and 200 wavelengths in
columns. The first 100 wavelengths are linearly related with y, and the
last 100 variables are random numbers from 0 to 1. In the second part,
noises are in the range of 0 to 0.005. K-Stone sampling was applied to
form calibration set (30 samples) and independent test set (20 sam-
ples). The calibration set is used for variable selection and modeling,
and the validation set is used for prediction.

3.2. Corn Dataset

NIR datasets of corn were got from the website: http://www.
eigenvector.com/data/Corn/index.html. The datasets contain 80 sam-
ples of corn. Each spectrum is in the range of 1100–2498 nm within
700 wavelengths at intervals of 2 nm. The properties of protein and
starch are analytical targets. 32 samples were used to make up the cal-
ibration set, 32 samples were used as the validation set and 16 samples
were employed as the test set according to the K-Stone sampling.

3.3. Iodine Value (IV) of Edible Oil Dataset

Soybean oil, olive oil, peanut oil and blend oil products were ob-
tained from local supermarket. Iodine value were carried out by a stan-
dard titration method which is according to the official methods
described in Method for animal and vegetable fats and oils-
determination of iodine value (ISO3961:1996, MOD). 59 samples were
prepared by mixing the four kinds of oil with the concentration of soy-
bean oil, olive oil, peanut oil, blend oil from0% to 85.46%,0% to 69.34%,0%
to 88.35%,0% to 85.46%, respectively. NIR spectra were collected with

http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html
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5 mm quartz cuvette by AutoCalib™ Demo (HAMAMATSU, Japan). The
spectra were acquired over the range 1100–2100 nm (middle gain res-
olution, 2000 ms scans) at room temperature. Between each spectrum,
the quartz cuvette was rinsed by the next sample. The dataset was split
into Calibration set (36 samples) and independent test set (23 samples)
by K-Stone sampling.

3.4. Beer Dataset

NIR datasets of cornwere got from thewebsite: http://www.mli.kvl.
dk/foodtech/special/specials.htm. This spectra dataset was obtained
with 30 mm quartz cell and collected at intervals of 2 nm within the
wavenumbers range 400–2250 nm (926 points). The property of inter-
est links to the original extract concentration. The dataset was divided
into calibration set (36 samples) and independent test set (24 samples)
by K-Stone sampling.

3.5. Reagents

Potassium iodide (AR, Sinopharm Chemical Reagent Co., Led. China),
Sodium thiosulfate pentahydrate (AR, SinopharmChemical Reagent Co.,
Led. China), Cyclohexane (CP, Sinopharm Chemical Reagent Co., Led.
China), glacial acetic acid (AR, Sinopharm Chemical Reagent Co., Led.
China).

3.6. Software

All codes and datasets computations were written and applied in
Matlab (V2014a, Mathworks, USA) on my personal computer (SSD)
with an Intel Core i5-4210U 2.4 GHz CPU and 8 GB RAM for analysis.

4. Results and Discussion

4.1. Simulated Data

This dataset is designed to investigate general applicability of SBOSS.
5-fold cross validation is applied to explore its predict ability [37].
Meanwhile, MCUVE, GA, CARS, SCARS and BOSS are used for compari-
son, aiming at indicating that SBOSS is truly a promising method to
eliminate uninformative variable, but not to make a decision which
method is better.

Performance of different variable selection models are illustrated in
Table 1. The results between two full-variables PLS models obviously
show that uninformative variables have a great impact on themodel ef-
ficiency. Compared to the full spectrum model, GA, CARS, BOSS, SCARS
and SBOSS gave great improvements in RMSEP. The RMSEP decreased
from 0.4947 to 0.0149, 0.0112, 0.0145, 0.0118 and 0.0111. It is worth
noting that, the uninformative variables were well managed by CARS,
BOSS, SCARS and SBOSS, but MCUVE led to poor competence because
of the introduction of three uninformative variables. SBOSS showed
the lowest RMSEP (0.0111) with the same nLVs with others. The
Table 1
The results on the SIMUIN dataset of different methods.

Characteristics PLSa PLSb MCUVE-PLS GA-PLS CA

Mean SD Mean SD M

nVAR 200(100)c 100(0) 78(3) ±4 60(2) ±18 35
nLVs 4 4 4 ±0 3 ±0 4
RMSEC 0.4673 0.0091 0.0396 ±0.0257 0.0135 ±0.0059 0.
RMSEP 0.4947 0.0112 0.0392 ±0.0291 0.0149 ±0.0055 0.

nVAR: The number of selected variables. nLVs: The number of selected latent variables of PLS.
RMSEC: Root mean square error of calibration. RMSEP: Root mean square error of prediction.
SD: Standard deviation in 50 runs.

a Results using full spectrum with 200 variables by PLS.
b Results using only the 100 simulated informative variables by PLS.
c Number in the bracket denotes the number of uninformative variables used in the model.
standard deviation (SD) of six methods ranges from 0.0015 to 0.0022,
which has little difference.

From Table 1, it can be observed that compared with othermethods,
SBOSS selected less variables and gave good RMSEP, together with
SBOSS, also SCARS did not select uninformative variables. CARS and
BOSS both perform well in RMSEP, but the two methods still select
one or two uninformative variables. Above this, taking stability of re-
gression coefficient into account is truly essential. We can ascertain
that SBOSS is indeed an alternative method for variable selection. In
conclusion, SIMUIN data has indicated that SBOSS is feasible to elimi-
nate uninformative variables and improve predict ability. Three practi-
cal NIR datasets will be discussed in the next.

4.2. Corn Protein Data

The original NIR spectra of corn samples are presented in Fig. 1 (Sup-
plementary material). In the corn dataset, on the base of 5-fold cross-
validation on full spectra, the maximum number of LVs (latent vari-
ables) was set in 10. The results are demonstrated in Table 2, Fig. 2. In
data analysis of spectrum, the most important part is not the most re-
lated wavelengths but the combinations of several bands which are
chemical meaningful.

Common variables are existed among the four variable selection
methods, including the regions around 1680, 1800 and 2180 nm. It
can be noticed that selected variables cover a wide range linking to
the complicated structure of protein, e.g. C\\H, O\\H and N\\H bond
with different vibration pattern, complex microenvironment of the
three bonds, and the interaction of them.

As shown in Table 2, MCUVE gave a slighter better result than the
full-spectrum PLSmodel, while other fivemethods showed obvious im-
provement in RMSEP. In total, 79 variables were retained by MCUVE,
whereas fewer variables were selected by GA, CARS, SCARS, BOSS and
SBOSS. GA, CARS and SCARS obtained comparable results, BOSS and
SBOSS gave better results. The lowest RMSEP was acquired by SBOSS
with fewer variables as SBOSS can avoid selecting uninformative vari-
ables, which have been investigated in simulated data. What's more, it
should be noted that SBOSS also provide the lowest SD, even smaller
than SCARS, which also hires stability of RC as index. The results on
corn protein data demonstrated the efficiency of combination of MPA
and stability of RC. Both the accuracy and robustness can be assured.
The phenomenon expresses that with fewer variables, better prediction
results can be acquired. As a result, it is essential to carry out variable se-
lection before establishing calibrationmodels.What'smore, considering
that collinear variables can reduce the stability of calibration models,
choosing only the key variables is a practicable way for modeling.

The variables selected by CARS, BOSS SCARS and SBOSS of protein
are displayed in Fig. 3. BOSS and SBOSS obviously have similar selected
variables, compared with SCARS and CARS, SBOSS eliminates variables
around 2210 nm and 1200 nm, and it retain the region around
1450 nmcomparedwith BOSS, at the same time,MCUVE remove the re-
gion around 1450 nm, GA didn't retain the variables around 1450 nm
RS BOSS SCARS SBOSS

ean SD Mean SD Mean SD Mean SD

(1) ±7 53(1) ±8 46(0) ±8 31(0) ±9
±0 4 ±0 4 ±0 5 ±1

0106 ±0.0015 0.0095 ±0.0006 0.01 ±0.0022 0.0075 ±0.0007
0112 ±0.0015 0.0145 ±0.0015 0.0118 ±0.0016 0.0111 ±0.0013

http://www.mli.kvl.dk/foodtech/special/specials.htm
http://www.mli.kvl.dk/foodtech/special/specials.htm


Table 2
The results on the corn dataset of different methods.

Element Characteristics PLS MCUVE-PLS GA-PLS CARS BOSS SCARS SBOSS

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Protein nVAR 700 79 ±5 31 ±9 49 ±14 16 ±6 16 ±7 25 ±7
nLVs 10 8 ±3 7 ±1 10 ±0 8 ±2 9 ±1 11 ±2
RMSEC 0.1387 0.0764 ±0.0327 0.0516 ±0.0140 0.0718 ±0.0144 0.0366 ±0.0172 0.0617 ±0.0122 0.0183 ±0.0049
RMSEP 0.1275 0.1091 ±0.0417 0.0683 ±0.0170 0.0688 ±0.0137 0.0411 ±0.0172 0.0636 ±0.0101 0.0275 ±0.0048

Starch nVAR 700 80 ±14 33 ±9 39 ±7 13 ±4 16 ±8 13 ±3
nLVs 9 10 ±1 9 ±2 10 ±0 9 ±1 9 ±1 9 ±1
RMSEC 0.3053 0.1638 ±0.0107 0.0929 ±0.0239 0.1451 ±0.0273 0.0943 ±0.0082 0.1181 ±0.0163 0.0779 ±0.0049
RMSEP 0.2479 0.1810 ±0.0120 0.1134 ±0.0362 0.134 ±0.026 0.0944 ±0.0168 0.1243 ±0.022 0.0859 ±0.0121
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and 1660 nm,which result in that SBOSS shows the best performance of
RMSEP (0.0275).

Moreover, the variables in the absorption peak of the spectrum
(2100 nm–2200 nm, 1440 nm,1600 nm–1800 nm) were possibly
employed in the modeling. The variables in the range from 2200 nm
to 2400 nm (with little information) that were selected by CARS were
completed removed by MCUVE, GA, BOSS and CARS, while SCARS gave
better results than CARS, because it retained fewer variables in this re-
gion than CARS.

4.3. Corn Starch Data

The results of six different methods in corn dataset are given in
Table 2. It is obvious that all the variable selection methods gave better
prediction results compared to the PLS full spectrum. SBOSS gave the
lowest RMSEP (0.0859), followed by BOSS, GA, SCARS, CARS and
MCUVE. it has an improvement above 48% to the PLS full spectrum
model. Moreover, SBOSS yields the lowest SD (0.0121), which performs
Fig. 2. RMSEC and RMSEP of PLS, MCUVE, GA, CARS, BOSS, SCARS and S
higher stability. As can be seen from Fig. 4, MCUVE and CARS didn't re-
move the variables between 1200 nm to 1400 nmwhich doesn't corre-
spond to starch, therefore the worst results were obtained. BOSS and
SBOSS have selected fewer variables than other four methods with
lower RMSEP, which demonstrated that better prediction results can
be achieved with fewer variables. All the methods have selected the re-
gion around 1748 nm and 1766 nm which correspond to the second
overtone of C\\H.

4.4. IV Dataset

Fig. 1 (Supplementarymaterial) shows theNIR raw spectra ofmixed
edible samples over the spectral range of 1000–2200 nm. There are five
absorption regions, which are similar with the literatures describing the
location of NIR regions specific to edible oils. The two peaks centered
around 1168 and 1210 nm correspond to the second overtone of CH
stretching vibration. The combination of the C\\H stretching and vibra-
tion with other vibration modes of the concerned molecule associated
BOSS on datasets (A) corn protein (B) corn starch (C) IV (D) beer.



Fig. 3. The variables selected by MCUVE, GA, CARS, BOSS, SCARS and SBOSS on protein of corn datasets.
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with the regions around 1392 and 1414 nm. And two peaks centered
1726 nm and 1761 nm linked to the first overtone of the CH stretching
vibration.

Table 3 and Fig. 2 show the results of IV of edible oil. Compared to the
full spectrum PLS model, the six variable selection methods didn't give
great improvements. Still and all, SBOSS showed the largest improve-
ments (20.2%) of RMSEP with the lowest SD (0.0022). The other five
methods all have much larger SD than SBOSS. Combined with Fig. 5, it
is obvious that GA obtained the least selected variables, but the worst
prediction performance it got. It didn't select the regions around
1392 nm, 1414 nm which correspond to the combination of the C\\H
stretching and vibration with other vibration modes of the concerned
molecule and the region 1761 nm linked to the first overtone of the
C\\H stretching vibration. Elimination of informative variables lead to
the bad outcomes of GA. SCARS and BOSS have similar selected variables
except the region around 1400 nm. Both of them selected all the infor-
mative variables which linked to oil, thus, they gave nearly the same
Fig. 4. The variables selected by MCUVE, GA, CARS, BO
RMSEP. In IV dataset, SBOSS still gave a good performance not only in
prediction ability but also stability.

4.5. Beer Dataset

In beer spectrum, there is a large variation in the visual part of the
spectra going from 400 nm to approximately 700 nm. This is due to var-
iation in the visual appearance of the beers, which vary from very light
beers to very dark beers. The area has a high variance, but it has little or
no relationship to the chemical property to be predicted. In the high
spectral range, dominated by absorbance of water, high absorbances
lead to noisy measurements, which may also have a certain influence
on the regressionmodels but are not related to the parameter to be pre-
dicted. The remaining part of the spectrum is dominated by C\\H and
N\\H stretching overtones except for the O\\H second overtone of
water at approximately 970 nm. This data set is interesting because it
contains the two features that mostly lead to suboptimal models
SS, SCARS and SBOSS on starch of corn datasets.



Table 3
The results on the IV dataset of different methods.

Characteristics PLS MCUVE-PLS GA-PLS CARS BOSS SCARS SBOSS

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

nVAR 3108 809 ±430 9 ±7 144 ±90 30 ±12 135 ±74 187 ±9
nLVs 3 2 ±1 2 ±0 3 ±1 4 ±1 2 ±0 3 ±1
RMSEC 1.6999 2.3119 ±0.3671 1.9835 ±0.1172 1.724 ±0.2489 1.8784 ±0.0508 1.8101 ±0.048 1.4785 ±0.0017
RMSEP 2.6271 2.3403 ±0.2382 2.6676 ±0.3290 2.1683 ±0.2548 2.1203 ±0.2681 1.8819 ±0.0803 1.6123 ±0.0022
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when using non-relevant variables. The left (low wavelength) part of
the spectrum contains highly systematic but non-relevant variation.
The right (high wavelength) part is mainly unsystematic noise and
also irrelevant for predictions.

The noisy part is typically not too difficult to handle but it leads to spu-
rious correlations. In this case, such spuriously selected variables are easily
detected visually because of the spectral nature of the data; if one variable
is selected and the neighboring variables are not, then it is an indication
that the result is not to be trusted. Such visual aids are not feasible for
all types of data, but we can use them here to see how different ap-
proaches handle noisy data. The systematic but irrelevant left part of the
spectrum is more challenging and will typically lead to problems. The in-
formation in that area has no physical relation to the quality but because
of the high variance and the limited number of samples, variables from
that region are typically included by variable selection methods due to
the high variance and accidental moderate correlation.

The purpose of acquiring the data is to predict the real extract con-
centration,which is ameasure of the ability of the yeast to ferment alco-
hol. It is used as quality parameter in the beer production. Predicting the
real extract from spectroscopicmeasurements can provide a fast quality
measurement in the beer production.

The results of differentmethods are listed in Table 4 and Fig. 2. It can
be seen that compared to the PLS full spectrum model, the prediction
has showed great improvement with variable selection. CARS and
BOSS performs worst. The reason why CARS and BOSS do not play
well may be that the index based on RC is not an optimal choice.
SBOSS gave the best RMSEP and SD. One detail we should notice is
that the performance of BOSS on the dataset is abnormal. The stability
of BOSS is the worst, and the abnormal results in 50 replicate runs are
listed in Table 2 (Supplementary material). Over-fitting is serious.
Fig. 5. The variables selected by MCUVE, GA, CA
To give a better understanding and explanation of the selected vari-
ables, the variables selected by MCUVE, GA, CARS, BOSS, SCARS and
SBOSS are shown in Fig. 6. The variables selected by SCARS and SBOSS
are more concentrated on the region between 1100 and 1500 nm,
which is linked to the absorption of 1st overtone of O\\H stretching
bond vibration.

GA, SCARS and MCUVE have comparative performance, while vari-
ables retained by MCUVE were fifteen times of those by SCARS, GA
and SBOSS. However, CARS and BOSS abnormal retain the region
1600-2200 nm which is mainly noise information. That's why the re-
sults CARS and BOSS are bad. Beer, as a mixture, consists thousands of
chemicals, so it has more disturbance than simple system. Therefore,
retaining uninformative variables usually bring in bad results when ir-
relevant information interferes. Compared with BOSS and CARS,
SBOSS prevent the over-fitting issue efficiently. It not only gave the out-
standing predict ability but also show the best stability. On top of that,
the index of stability of RCmay be a good choice. It can ensure the accu-
racy and stability of prediction.

Meanwhile, the RMSECV in the sub-models decrease during the iter-
ations and reach the minima at iteration 12 (Fig. 2 in Supplementary
material). This method takes into consideration of variable subsets at
different levels of nVAR, which is reasonable since the optimal nVAR is
unknown before and during variable selection. The weights of variables
change during the iterations as it is shown in Fig. 3 in Supplementary
material. The variables which have large weight at the beginning may
not turn out to be unimportant for modeling with small weight in the
later iterations. The optimal variable set is obtained in iteration 12.
The most informative variables are thus obtained at around 1100 nm,
1200 nm and 1500 nm, which are reserved by all six variable selection
methods.
RS, SCARS, BOSS and SBOSS on IV dataset.



Table 4
The results on the beer dataset of different methods.

Characteristics PLS MCUVE-PLS GA-PLS CARS BOSS SCARS SBOSS

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

nVAR 926 132 ±12 5 ±2 104 ±28 18 ±18 20 ±28 4 ±1
nLVs 3 3 ±0 3 ±1 3 ±0 3 ±0 3 ±1 3 ±0
RMSEC 0.531 0.2847 ±0.0346 0.1866 ±0.0143 0.1822 ±0.0615 0.2055 ±0.0149 0.1979 ±0.0459 0.1582 ±0.0191
RMSEP 0.5786 0.2321 ±0.0351 0.2169 ±0.0295 0.2078 ±0.0705 0.3032 ±0.1477 0.1917 ±0.0465 0.1524 ±0.0093
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4.6. Stability of RC and MPA

Stability of a variable considers the stability of regression coefficient,
not only the RC. It can guarantee that the most relevant variables have
larger probabilities to participate in the model by combining with
MPA. In SBOSS, sub-models are computed due to the weights of vari-
ables, and the weights are achieved according to the stability of RC. It
makes the results more reliable.

As a general framework for statistically extracting interesting infor-
mation from a large population of sub-models towards better under-
standing of the chemical data, MPA is promising in developing new
chemometrics algorithms, ranging from variable selection and model
evaluation to outlier detection and applicability domain definition.
4.7. Soft Shrinkage Strategy

In soft shrinkage strategy, the variables whichmay be considered as
less important are assigned smaller weights, thus, these variables still
have the chance to participate the models. At the same time, they may
prove to be informative. The risk of ignoring essential variables can be
reduced by using soft shrinkage during the whole process. WBS also
played a role in the good performance of BOSS, different weights assign
to different objects, so the objects with larger weights have more
chances to be selected. Applying WBS can avoid the influence of collin-
earity of RC, also, the combination of BSS and WBS make the variable
ranking more reliable.
Fig. 6. The variables selected by MCUVE, C
4.8. Over-Fitting and Cross Validation Issue

BOSS and SBOSS is based on 5-fold CV, and the basic problem in
learning is to test all of the training data on some set of previously un-
seen CV data, and then to pick up the smallest RMSECV. Therefore, the
stability of RMSECV should be assured.

Investigations have shown that variable selection has the ability to
lower the risk of over-fitting by reducing the dimensionality of the var-
iable space. However, methods based on RC still can't avoid over-fitting.
In spectra, noise and uninformative variables are main factors that may
have influence on the stability of computation. Related research has in-
dicated that RC is susceptible to noise. Firstly, PLS can't extract effective
variables on account of the existence of high level noise, which will
bring in poor RC, such as the beer dataset. Meantime, the RC of uninfor-
mative variables are usually labile. Therefore, the RC can't represent the
real model in effect the existence of two types of variables. Secondly, in
practice, CV doesn't give warning of over-fitted models, and investiga-
tions have shown that model stability is a good indicator of over-
fitting as well as under-fitting [38]. When a PLS model is built, the ulti-
mate result is the regression vector which represents the model. The
stability of the regression vector thus reflects the stability of the
model. On top of that, in our study, combination of the stability of the
RC and the prediction of CV is adopted as a criterion for model selection
which is based on MPA can prevent over-fitting efficiently. In SBOSS
loop, through multi-models, the model prediction ability and stability
is acquired. It can select the optimal variable combination and avoid
over-fitting in PLS models.
ARS, BOSS and SBOSS on beer dataset.
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5. Conclusion

In the framework of ensemble, we introduced an effective and
promising variable selection approach that we term SOBSS as a tech-
nique to deal with overlapped spectral variables and uncorrelated vari-
ance of NIR spectra system for identification and quantitative analysis.
The application based on three datasets demonstrated the improve-
ments of prediction ability by adopting SBOSS to the shape of NIR vibra-
tion. The model selected by SBOSS showed both When compared with
five outstanding variable selection methods, including GA-PLS, MC-
UVE, CARS, SCARS and BOSS, SBOSS was demonstrated as a better strat-
egy with the good accuracy, model stability and variable selection cred-
ibility, and the combination of MPA, model stability and CV avoided
over-fitting efficiently. The outstanding performance of SBOSS indicates
that it is a good alternative of variable selection in multivariate
calibration.

In addition, SBOSS suggested a broader utility for variable selection
with chemical interests, and the stability of RC can be considered the op-
timal search index in further investigations. Although variable selection
was performed by SBOSS coupled with PLS in this study, it is a general
strategy that can also be coupled with other regression and classifica-
tion methods and applied into other fields, such as genomics, bioinfor-
matics, metabolomics and quantitative structure–activity relationship
(QSAR).
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